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PREFACE 

This report concludes the Queueing Methodology study that has been 

directed toward the development of dynamic models for evaluating anti- 

submarine warfare (ASW) system effectiveness.  The project was sponsored 

by the Director, Naval Analysis Programs, of the Office of Naval Research 

(ONR).  Mr. R. H. Dickman was the ONR Project Scientific Officer.  The 

research effort was performed jointly by Stanford Research Institute's 

(SRI) Naval Warfare Research Center (NWRC), Mr. L. J. Low, Director, 

and the Information Sciences Laboratory, Mr. D. R. Brown, Director. 

Mr. W. H. Frye of NWRC was the project leader for that part of the study 

leading to this report. 

The first report on the project, "Dynamic Analysis of ASW Effective- 

ness—A Queueing Approach," was published in March 1972.1       This report 

now concludes the project with the presentation of the research results 

that complement the results from the first report. 

The following SRI personnel contributed to this final report: 

William H. Frye (NWRC, project leader) 

Andrew J. Korsak (Information Sciences Laboratory). 

In addition, computer programming assistance was provided by D. L. 

Alderman and D. G. Ayers of NWRC. 

* 
References are listed at the end of this report. 
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I  INTRODUCTION AND SUMMARY 

A.   Research Objectives 

The objective of the Queueing Methodology study was to develop new 

methodology for evaluating ASW system effectiveness in dynamic contexts. 

It should be specifically noted that the study was not directed toward 

the solution of any particular real-world ASW problem.  Rather, the prob- 

lem addressed is how to adequately analyze and measure ASW system effec- 

tiveness in complex, dynamic, tactical situations. 

To understand the approach taken in this research effort, some back- 

ground in the nature of naval effectiveness modeling is needed.  Models, 

modeling efforts, and effectiveness analysis can be divided into two 

categories:  analytical or operational.  Roughly speaking, analytical 

models are usually constructed on the assumption that the model struc- 

ture and parameters are known or will somehow be estimated by the time 

the model is used on a real problem.  Parameter estimation, and the struc- 

turing of the model so that its parameters can be estimated, is usually 

of secondary concern in such modeling efforts.  In contrast, operational 

models focus on the data available (or to become available), and the 

parameters are estimated from these data. 

Most ASW effectiveness modeling efforts are analytical, and in many 

respects analytical models are more highly developed than operational 

models.  War games and Monte Carlo simulation, which are common forms of 

analytical models, have advanced considerably in many technical respects 

over the past decade or so.  In particular, complex dynamic tactical 

situations are now routinely modeled by analytical means.  Whatever the 

advantages of these advanced analytical models, they suffer from many 



inherent weaknesses, particularly the difficulties in estimating parameters, 

or more generally in demonstrating model validity. 

On the other hand, operational models—which are nearly always some 

form of conditional probability model—have their own weaknesses.  Al- 

though parameter estimation (and therefore model validity) is not a major 

problem (by virtue of its very construction), the operational models seem 

to have limited usefulness and flexibility. 

Both analytical and operational models were studied during the re- 

search effort.  The first part of the study was devoted to analytical 

i * queueing models that are presented in detail in an interim report. 

Throughout this part of the study, the model parameters were assumed to 

be known and queueing models were formulated for making ASW effectiveness 

calculations.  As the study progressed, however, it became evident that 

these calculations could be handled more conveniently by Markov methods 

than by queueing methods.  Moreover, the interim report also clearly 

shows that Markov methods could conveniently be used to calculate such 

dynamic quantities as the: 

• Expected number of contacts lost while in the ASW system 
(over a given period of time). 

• Probability of missing a true contact (failure to detect) 
for a given level of contact activity (false and true 
contacts). 

• Expected time to detection. 

• Expected time from detection to kill. 

Several limitations of the queueing models emerged as the study pro- 

gressed.  On the one hand, parameter estimation proved to be as formidable 

a problem for the queueing models as it is for dynamic Monte Carlo simu- 

lation models.  On the other hand, a major difficulty arose from computa- 

tional considerations:  The more complex queueing models required so much 

* 
References are listed at the end of the report. 



computer time that direct simulation became more attractive for acquiring 

numerical results.  The conclusion that the queueing models chosen for 

study were at a dead end therefore became inescapable, and a reevaluation 

of research objectives was accordingly made.  The particular queueing      ^ 

models that had been studied in this phase proved to be valueless for the 

next phase.  Nevertheless, the experience gained with Markov methodology 

(including the formulation of ASW problems in terms of states and transi- 

tions, as well as formulas and numerical techniques for obtaining answers) 

proved to be valuable during the remainder of the study. 

Research effort during the second part of the study was concentrated 

on a complementary aspect of effectiveness modeling; namely, model struc- 

turing and parameter estimation.  This led to consideration of dynamic 

operational models instead of dynamic analytical models.  Examination of 

the classical conditional probability models such as the weapon system 

effectiveness (WSE) models was considered as the starting point for this 

part of the research effort.  Thus, the emphasis in the second part of 

the study was on the development of methods for structuring dynamic models 

and estimating their parameters rather than methods for calculating 

measures of effectiveness when the model parameters are known.  More 

specifically, the objectives for this part of the study were to: 

• Analyze conditional' probability effectiveness models and 
determine their limitations. 

• Generalize conditional probability effectiveness models 
(using Markov methods if they proved appropriate) to: 

- Remove some of the limitations on conditional probability 
models; in particular, determine ways to make them dynamic 
by incorporating false contacts. 

- Include, when appropriate, other dynamic aspects of the 
tactical problem being modeled. 

• Develop methods from simulated data and Fleet operational 
data for estimating parameters in the dynamic operational 
models. 



• Define and investigate ways to formulate new state spaces, 
and investigate potential ASW effectiveness applications if 
operational Markov models proved appropriate. 

• Investigate methods for reducing the variance of effective- 
ness measure estimates and for using variance estimates in 
exercise design. 

B.   Research Findings 

This section summarizes research findings, and Section C summarizes 

research activities for the second part of the study.  Every attempt has 

been made to separate what was found from what was done.  In many respects, 

however, the findings are rather general and may often be difficult to 

relate to research activities without a detailed study of the body of the 

report. 

During the final phase of the Queueing Methodology study, research 

findings ascertained: 

y       •  Queueing theory itself has no direct, unique applicability 
to the analysis of ASW system effectiveness.  However, some 

of the conceptual and computational methods—particularly 
Markov methods—often used in the analysis of queueing models 
are well-suited to analyzing effectiveness in today's complex 
tactical environments. 

•  Conditional probability models, the most commonly used opera- 
tional models, have many limitations. 

- They are static models, not dynamic.  One consequence of 
this is that they are defined for only a limited number 
of tactical situations, usually one-on-one engagements. 

- They have limited utility, flexibility, and predictive 
ability in new situations. 

- Meaningful sensitivity analyses cannot be performed. 

- They do not explicitly include factors such as false con- 
tacts that degrade ASW system capability. 

- They use only a limited portion of the data available for' 
parameter estimation. 



- They have few—if any—environmental or operational 
variables, and causative variables may be difficult to 
isolate. 

Markov (and semi-Markov) methods are not only be used in- 
creasingly in analytical ASW effectiveness modeling but also 
appear to have considerable potential for operational effec- 
tiveness modeling in dynamic ASW environments. 

A Markov chain model can be regarded as the natural general- 
ization of a conditional probability model.  This generaliza- 
tion can remove many of the limitations on traditional, 
conditional probability models. 

Operational Markov models have both advantages and disad- 
vantages.  The principal advantage is that operationally 
meaningful measures of effectiveness can be defined for a 
large variety of dynamic tactical contexts.  The four 
principal overall effectiveness measures that Markov models 
can define are: 

- The probability of mission success. 

- The average time until mission failure (or success). 

- The probability that mission failure does not occur by a 
specified time. 

- The probability of occupying a designated state at a random 
time. 

Many measures of effectiveness used in naval analysis studies 
are equivalent to one of these four measures.  A wide variety 
of missions and tactical situations can be treated by suitably 
defining success and failure states. 

The principal disadvantage is that some properties of opera- 
tional Markov models were found to be rather "sterile." 
That is, the output effectiveness measure sometimes too 
perfectly reflects the data inputs used to estimate parameters. 
The four effectiveness measures differ markedly in this re- 
spect; specifically, when data from "complete" exercises are 
used to estimate the transition probabilities in a Markov 
chain model, it was found that: 

- The estimated probability of success obtained from Markov 
calculations is identical to the ratio of the number of 
successes to the number of exercises. 

y 

/ 



The estimated conditional mean time until failure obtained 
from Markov calculations is identical to the ratio 

£ (times until failure) 
total number of failures 

provided that only the path data leading to failure are 
used to estimate the Markov parameters. 

These assertions can be translated into implications con- 
cerning the statistical improvability of the measures: 

- The variance of the estimate of Prob(success) is not re- 
ducible by using a Markov model. 

- The variance of the Markov estimate of the average time 
to fail (given that failure ultimately occurs) is reducible 
by at most a factor roughly equal to the probability that 
failure ultimately occurs.  The estimate will in general 
be biased when all the path data are used in a non-Markov 
context. 

The most difficult step in defining a useful operational 
Markov model is expected to be determining a satisfactory 
set of states ("state space").  A set of reasonable re- 
quirements for the state space are: 

- States should be mutually exclusive and exhaustive. 

- Each state should be operationally observable. 

- Each state should be of operational significance. 

-States should be of reasonable generality, though not 
necessarily so general as the traditional state sequence 
of Opportunity + Detect + Classify + Attack + Kill. 

- States should be defined so that the effectiveness 
measure(s) can be calculated by probability statements 
about state occupancy or by mean time-to-occupy state- 
ments.  This often can be accomplished by defining success 
and failure states as absorbing states. 

- The statistical requirement that knowledge only of the 
current state should determine the transition probabilities 
for the next step should be reasonably well met. 

Effectiveness (and performance) measures can be defined at 
two levels in a Markov model.  Lower-level measures often 



relate to the performance of individual subsystems or ASW 
functions such as detection and classification.  These 
measures, which are quantities such as Prob(Classify/Detect) 
and the mean time to classify, can be associated with the 
microstructure of the model; that is, with transition 
probabilities.  Overall effectiveness measures that depend 
on the entire set of model parameters are at a different 
level. 

- Degrading factors such as false contacts can be explicitly 
included to permit systematic study of the relationship 
between the degradation parameters and the effectiveness 
measures. 

- Many calculations of interest can be routinely made; in 
particular, the dynamic response can be calculated when 
appropriate and sensitivity analysis can be routinely 
performed. 

- Many kinds of Fleet operational data, both static and 
dynamic, can in theory be used to systematically estimate 
the parameters of a Markov model.  One type of useful 
static data (transition data) is now used to estimate the 
the conditional probability parameters in conditional 
probability models.  Other types of potentially useful 
data are rarely if ever used in effectiveness modeling; 
an example is average time-in-state data that may be 
considered dynamic data. 

- Standard methods are available for many parameter estima- 
tion problems in Markov modeling.  Other methods were in- 
vestigated and evaluated during the current research. 
Many parameter estimation problems lead to least squares 
or quadratic programming problems.  When a satisfactory 
set of states has been found for a Markov model, parameter 
estimation is not expected to be a significant problem. 

- Operational Markov models may be used to obtain improved 
estimates of certain of the traditional effectiveness 
measures. 

Selecting a suitable set of states for an operational Markov 
model in ASW will often require the aggregation of states 
and/or the addition of auxiliary states to make the Markovian 
assumption valid.  It was found during the research that 
auxiliary states can often improve the fit, and specific 
methods are given for introducing them.  Aggregation of 
states by systematic methods is more difficult; one method 



sometimes useful is least squares using Prota(state) as a 
function of time as input.  As a general method, least 
squares appear to offer several uses in the structuring of 
the state space and in estimating parameters.  The general 
use seems to result from the linearity of many of the sets 
of equations associated with Markov theory.  Quadratic pro- 
grams are needed when the transition probabilities esti- 
mated from least squares are infeasible. 

Markov models may be useful in comparing dissimilar models 
and in validating simulation models.  The comparison (or 
validation) can be accomplished by determining a suitable 
common set of states for the two models, estimating the 
probability of occupying each state for all relevant in- 
stants of time for each model separately, and comparing 
the two sets of Prob(state) as a function of time curves. 

Current analysis reports from operational exercises contain 
inadequate data for Markov modeling.  Only minor changes in 
analysis procedures should be required to collect data for 
a Markov model with a moderate number of states, however. 

A Markov model may be useful in resolving some experimental 
design problems encountered in Fleet exercise planning.  One 
simple situation in the study was analyzed by using an opti- 
mization method that incorporated the cost of experiments. 
The optimum number of samples of each available type were 
determined analytically on the assumption that the objective 
would minimize the variance of the Prob(success) estimator 
subject to the cost constraints. 

C.   Research Activities 

The findings in Section B were arrived at by considering the combined 

research activities from both phases of the project.  An overview of the 

individual sections of this report conveniently summarizes these activities, 

A summary of the work done on queueing models during the first phase 

of the project is given in Section II.  This section also introduces some 

results from the analytical queueing models that obtained after the pub- 

lication of the interim report.1 



In Section III, conditional probability models are defined, dis- 

cussed, and shown to be a special form of Markov model.  Parameter esti- 

mation for this model is briefly discussed, and some intuitive attempts 

are made to introduce false contacts by modifying the estimation formula. 

The modified formulas prove to be incorrect, however, and the correct 

formula (derived from Markov theory) is given.  Although the limitations 

of conditional probability models are enumerated, several arguments are 

given to justify their use.  Finally, the suggestion is given that many 

of the limitations on conditional probability models can be removed by 

generalizing to a Markov model. 

Section IV opens with a brief general discussion of useful properties 

of Markov models in ASW effectiveness analysis.  Four measures of effec- 

tiveness of rather general use, but readily definable and calculable in 

a Markov model, are then given.  Also discussed is model formulation that 

includes defining a set of states so that the measures may be conveniently 

calculated.  State space definition, asserted to be the most difficult 

step in model formulation, and rules of thumb for formulating a set of 

states are given.  Parameter estimation in a Markov model applied to an 

ASW situation is briefly discussed.  Finally, the possibility is mentioned 

of using operational data not currently used for modeling. 

Basic Markov chain theory and formulas are given in Section V.  This 

material is needed for either analytical or operational modeling; for the 

latter, it is needed both for calculating effectiveness measures and as a 

basis for several parameter estimation methods.  Algebraic formulas for 

all the measures are included.  Common-sense interpretations of the ab- 

sorption probability formulas and their elements are given where appro- 

priate to aid the understanding. 

In Section VI, parameter estimation for a Markov model is discussed 

at length.  We point out the usefulness of factoring the estimation problem 



into static and dynamic parts.  Parameters for the static part, which 

correspond to a conditional probability model (or the imbedded chain in 

Markov theory), may be estimated from transition data only.  The dynamic 

parameters can then be separately estimated from mean time-in-state opera- 

tional data. 

Methods for estimating transition probabilities are then given for 

various assumptions about the data available.  The input data are assumed 

to be transition data, mean time-in-state data, mean first-passage time 

data, data on the first and second moments of first passage times, or 

probability of state as a function of time data.  The need for least 

squares and quadratic programming are shown in several instances, but 

these are discussed in more detail later in the section. 

Holding (or waiting) times in a state, which are a function of the 

self-transition probabilities (p  ) in a Markov chain, are the subject 
ii 

of the remainder of the section.  The p  estimator is first shown to be 
ii 

a simple function of the observed mean time in state i in a Markov chain. 

Then, various ways to better approximate the holding time behavior by en- 

larging the chain through the addition of auxiliary states are suggested 

and examples are given.  The section concludes with some chi-squared 

goodness-of-fit tests that may be used to test the reasonableness of the 

Markov assumption. 

Section VII deals with the statistical problem of reducing the 

variance of the four effectiveness measures by using a Markov model. 

Improvement is measured relative to the estimates obtainable directly 

from the data.  Certain mathematical identities (proved as theorems in 

an appendix) are the key tool for discussing this important problem area. 

Several implications of the theorems conclude the section. 

Anticipating that most real-world ASW problems will not have a Markov 

structure (at least when a natural set of states is used), we need to know 
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how well Markov methods work on non-Markov problems.  Therefore, in Sec- 

tion VIII, a dynamic non-Markov model—conveniently described by a 

Probability-State-Time (PST) diagram—is introduced, motivated, and re- 

lated to a Markov model.  A PST diagram is used in conjunction with a 

dynamic (Markov) version of the WSE model in Section IX.  Numerical ex- 

perimentation uses data from the PST-defined model, and the resulting 

dynamic behavior given is compared with the dynamics of the actual process. 

Various methods are used to estimate parameters, and auxiliary states 

are sometimes added along the lines of the suggestions in Section VI. 

Although the addition of auxiliary states improved the dynamic fit, all 

Markov chain models fit rather poorly.  Therefore, two more sophisticated 

Markov models were tried.  The first, a semi-Markov model, resulted in a 

substantial improvement.  The last attempt used time itself in the state 

definitions:  The result was an,essentially perfect dynamic fit at the 

cost of a greatly increased number of states. 

In Section X, three false-contact models were defined by adding 

states for the prosecution of false contacts to the traditional states— 

search, opportunity, detect, classify, and kill.  Markov formulas are 

given for the Prob(Success) effectiveness measure; the form is a product 

of conditional probabilities divided by a false contact correction factor. 

For the second of these models, the influence of false contacts on effec- 

tiveness takes the form of a multiplicative correction factor to apply to 

the traditional product of conditional probabilities.  The third and most 

complex false contact model was defined by a cartesian product method; it 

has 27 states and includes false attacks and earlier stages of false- 

contact prosecution. 

Further numerical expectation, with a PST diagram for the first false 

contact model in Section X—is performed in Section XI. Five methods were 

used to estimate parameters with the original state space.  Three of these 
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methods were semi-Markov and the other two were Markov chains; none 

worked well.  Monte Carlo experiments were also performed to study 

sampling problems. 

After the earlier parameter estimation attempts failed with the 

original state space, some methods were tried with auxiliary states. 

Some improvement resulted from the most elaborate of these models, but 

the fit remained unsatisfactory.  By the end of the experimentation, the 

reasons for the many failures became apparent. 

A new topic, Markov models and Monte Carlo simulation, is the sub- 

ject of Section XII.  A single Monte Carlo model including a submarine, 

an aircraft carrier, and an acoustic decoy was selected for study with 

the use of the mean survival time measure.  The idea was to use the simu- 

lation to generate data for estimating the parameters of a Markov chain 

model.  A simple, natural set of states proved to be satisfactory for 

this simulation.  Parameters were determined in two different ways and 

led to almost identical estimates.  Probability of state as a function 

of time comparisons were made between the approximating Markov chain and 

the simulation model's direct output for assessing the validity of the 

approximation.  Finally, some basic sensitivity analyses were performed 

by using the fitted parameters, and an estimate was made of the increase 

in survival time as a result of an increase in the primary decoy parameter 

(called "capture time"). 

Section XIII deals with two questions:  how to combine different 

estimates of the same parameter in an optimal way, and how to use a Markov 

model in exercise design.  Both of these questions, which are treated in 

a very limited manner, entail the use of estimates of variance.  For 

question one, formulas are given for combining two or three independent 

estimates of an unknown constant, and the formulas are applied to the 

transition probabilities in a Markov chain.  To answer the second question, 
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an example of a simple three-state Markov chain model is assumed; a fur- 

ther assumption is that the number of samples at each of the two transient 

states can be freely chosen.  Formulas are then derived for the optimum 

number of samples under a cost constraint, and a table is provided to 

illustrate the optimal sample sizes for various costs. 

D.   Possible Operational Applications 

Possible operational applications are discussed in Section XIV, the 

final section.  Many forms of false contact models are possible using 

Markov concepts.  The choice of a state depends on the application and 

the problem features the analyst wishes to distinguish.  Markov models 

also may be helpful in studying the difficult subject of countermeasure 

effectiveness because states can be defined in terms of information. 

States and Markov models are then discussed in relation to the UPTIDE 

series of exercises, and suggestions are made for analysis using some of 

the concepts from this report.  Other possible applications include 

modeling:  range from a submarine and an HVU, electromagnetic radiations 

from an aircraft carrier, submarine exposure, and the submarine's classi- 

fication process. 

Two recommendations conclude the body of the report: 

(1) A research project in an area of current interest to the 
Navy should be undertaken to apply the dynamic Markov 
modeling methods developed during the study.  The model 
should be developed for class of tactical problems where 
wholly satisfactory measures of effectiveness have not yet 
been developed because of the dynamic nature of the prob- 
lem, the complexity of the problem, or the difficulty of 
relating lower level performance measures to the overall 
effectiveness measures.  The Naval Analysis Programs Office 
of the Office of Naval Research could sponsor such research 
as a continuation of the Dynamic Analysis study. 

(2) The technique of using a Markov model to compare dissimilar 
models or to assist in validating a simulation model should 
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be suggested to Navy analysts concerned with simulation 
validation and effectiveness modeling. 

Six appendices follow the body of the report.  Appendix A discusses 

ASW modeling which is conceptually related to the report, and compares 

the other approaches with those in the interim report and the present 

report.  Appendix B treats a special topic which relates to the analytical 

Queueing Models.  Appendix C gives Mason's rule for determining trans- 

missions in a flowgraph; the rule was applied to obtain the measures of 

effectiveness for the two of the false contact models.  Appendix D dis- 

cusses least squares and quadratic programming that were needed for 

parameter estimation.  Appendix E has proofs of the three important iden- 

tities relating to parameter estimation.  Finally, Appendix F amplifies 

the earlier discussion of state selection. 
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II  SUMMARY OF QUEUEING MODELS OF ASW UNITS 

A.   Summary of Work During the First Phase 

During the first year of the contract, the emphasis was on modeling 

ASW operations in terms of queueing theory.1  The objective was improved 

representation of ASW dynamics that would lead to more realistic measures 

of effectiveness than those currently available with traditional formulas 

consisting of products of success probabilities (the WSE model, for ex- 

ample).  Because "congestion" from many simultaneous contacts causes some 

degree of delay in ASW system processing, the suggestion to attempt 

queueing models in ASW analysis arose. 

After the literature on queueing theory and its applications was re- 

viewed, the conclusion was that a direct application of readily available 

results on single queue/multiple server systems is infeasible.  ASW situa- 

tions simply do not exhibit properties of a single "waiting line" in any 

sense.  What was needed to relate to ASW appeared to a degree in articles 

on networks of queues, such as in models of time-sharing and other com- 

puting systems.  Again, however, no direct parallel was found because 

contacts could not be justifiably regarded as passing through a series of 

ASW process stages without proper consideration of strong interaction be- 

tween the stages.  Therefore, the decision was made to construct a new 

set of congestion models that would exhibit queueing-like characteristics, 

be amenable to analysis by techniques in queueing theory, and relate 

better to the ASW situations considered.  This resulted in queueing 

analysis techniques found for solution of the models created; the key 

technique was the method of imbedded Markov chains.  Additional techniques 

found of great value in computations with the imbedded Markov models were: 
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• Laplace transform solutions. 

• Flowgraph techniques to organize computations efficiently. 

• Matrix flowgraphs to aid in model formulation. 

• Successive over relaxation (SOR) method for solving large 

systems of linear differential equations associated with 

Markov processes. 

• Pade approximants to etA for speeding up numerical integra- 

tion with Markov models. 

Other methods useful in queueing analysis were not adaptable to ASW models 

considered on this project.5  These methods include 

• Contour integration of Laplace transforms for waiting time 

distribution in tandem queues. 

• Integral equations for waiting time distributions. 

• Integro-differential equations for transient waiting time 

distributions. 

Although the queueing literature reports very powerful results with the 

above techniques, these methods are mainly for a single queue; no clear 

way appears as feasible as the Markov techniques for generalizing their 

applicability to more complex congestion models. 

The work on queueing models was divided into two areas:  at the 

single ASW unit level and at the force level.  This two-pronged approach 

decision was made on the basis that congestion in ASW operations probably 

originates in processing delays of contact information on individual ASW 

screen or search units, but that the overall effect is on the force level 

with regard to decisions to prosecute, maneuver for improved contact data, 

or evade for safety.  Consequently, work was started on the following two 

separate but closely related models. 

• A model for analysis of congestion effects in an ASW unit 

providing distributions for its periods of saturated and 

unsaturated detection capability. 
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•  A model for computing the probability of detecting a target 

by a typical ASW force configuration of units with known 

saturated and unsaturated period distributions and detection 

versus range characteristics.  A summary discussion of these 

models is presented in the following two subsections. 

1.   ASW Unit Model 

For the unit ASW model it was assumed that as a contact passes 

through the system, it occupies a unit of sonar service while in the first 

server —i.e., while undergoing detection—and continues to occupy that 

unit of sonar service even when in any of the three queues following the 

first server.  Similarly, the Combat Information Center (CIC) resource 

is assumed to be occupied at the rate of one unit per contact from the 

moment of entering 'localization" and up to leaving the system and so on. 

The unit model assumed that each ASW function serves a limited 

number of multiple contacts simultaneously.  The unit model representa- 

tion weighs all contacts uniformly for the load each places on a server, 

or equivalently, for the difficulty of service. 

The command and control and classification functions were 

omitted from the initial model.1  Similarly, certain other features of 

an ASW engagement have not been modeled.  Some of these are:  hand-off 

of functions from other ASW units, lost contact processes, and unsuccess- 

ful kill attempts and reattack process. 

Based on the above considerations, the initial multiple queueing 

situation of Figure 2.1 was selected for study.  The meaning of Figure 

2.1 follows. 

Acoustic stimuli, if they are locally generated as they become 

available for detection, await the availability of the detection server 

D in a fictitious queue Q .  This queue is created to measure the statis- 

tics of missed and delayed detection caused by preoccupation of the 
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FIGURE 2.1       PROTOTYPE  QUEUING  REPRESENTATION  OF  AN  ASW SYSTEM 

detection process.  As soon as an element of the detection server is 

available (four degrees of detection server occupancy are used here for 

specificity), the stimulus progresses "through" the detection phase 

according to prescribed detection time statistics.  From this point the 

stimulus is a contact.  Contacts not in process of localization are 

represented as "waiting" in a queue Q  in the same manner as the contacts 

progressed from a queue awaiting detection to a queue awaiting localiza- 

tion.  So, the contacts progress from the latter queue, through the 

localization process, through a queue awaiting the attack function, and 

so on, through service by the kill function. 

The number of parallel service units at each stage was selected 

for development purposes to be just enough so that queueing is possible 

at the following stage.  That is, in view of service at each stage being 

"tied up" until a contact leaves the system, at least one less unit of 

service is necessary at each successive stage.  In other words, the server 

capacities were chosen to be simple enough for a first study, but compli- 

cated enough to allow queues to form in all possible stages. 

An alternative schematic representation of the situation is 

presented in Figure 2.2.  This figure shows the idea of the presence of 

a contact being felt in several places at once, in that a contact 
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progressively uses the resource of sonar (detection), then sonar, CIC 

(localization), and so on, until it finally exits from the system. 

As a start it was assumed that all parallel service units at 

each stage have the same exponential service distribution, with parameters 

as in Figure 2.1.  It must be remembered that a completion of a service 

does not make a given service unit available for other contacts; such a 

completion merely tells when a transition of a contact to the next state 

occurs (either into the next server or the queue ahead of it).  The in- 

put distribution for all true and false contacts is also assumed to be 

exponential with parameter \.  (Both the input and service distributions 

can be made more general by using a network of parallel and series ex- 

ponential holding times.) 

Various attributes of factors associated with queueing systems 

in general were considered in structuring a suitable model for evaluating 

ASW system performance.  The primary statistical distributions were judged 

to be: 

• Unsaturated time distribution (for entire system). 

• Saturated time distribution (for entire system). 

• Waiting time distribution (in first queue, i.e., ahead 

of detection). 

• Distribution of time spent in entire system. 

Other significant distributions are: 

• Queue lengths at the various stages. 

• The number of contacts exiting any stage in a given 

time. 

The primary statistical distributions are needed in the force effective- 

ness model.1  The others may be useful for evaluating the effects of 

physical storage capacity or other limitations at various stages of the 

ASW system and for determining the nature of the input distributions to 
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other ASW platform queueing models coupled to a given one through a 

command and control hand-off system. 

The above statistical distributions can be used to calculate 

the following possible measures of effectiveness of an ASW unit: 

• Probability that a contact is lost. 

• Expected number of contacts lost while in the system, 

over a given period of time. 

• Probability of missing a true contact (failure to de- 

tect) for a given level of contact activity (false and 

true). 

• Expected time to detect. 

• Expected time from detection to kill. 

If the classification function were added to the model, the 

following additional measures would be obtainable: 

• Probability of losing a contact before classifying. 

• Expected time to classify. 

• Probability that a false contact is pursued all the 

way through to the kill function. 

Computation was aimed only at numerical calculation of the 

statistical distributions as these are the most difficult to obtain. 

The above measures of effectiveness were not considered in the current 

effort because fleet-operational data were unavailable to render them 

meaningful.  Graphs comparing analytical solutions and simulation re- 

sults for some of the computations that were performed are presented in 

Section II-B. 

2.   ASW Force Effectiveness Model 

The force level queueing model developed during the first phase 

of this study considered an ASW screening situation in which ASW units 
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maneuver within a protected area surrounding a task force.  The individual 

ASW units were assumed to experience congestion from the abundance of 

contacts according to the unit queueing model previously described.  In 

the numerical example worked out, only exponential approximations to the 

distributions of the unit model were used. 

The force model was based on the idea that units could be com- 

bined in a single detection device whose statistics for "windows" of 

possible target capture result from joint probability of detection by 

any one of the ASW units within range of a target.  Kinematics of both 

targets and ASW units were included along with a simple range-law for 

probability of detection given opportunity.  The example used for compu- 

tations is described by Figure 2.3 that shows initial positions and 

velocity vectors of the ASW units participating.  A lengthy series of 

calculations was performed to obtain probabilities of a target ever being 

detected prior to its penetrating the protected zone, given that the tar- 

get approaches the force from all possible (quantized) positions of 

initial appearance, as indicated in Figure 2.4 (all probabilities have 

been multiplied by 100 in the figure). 

The assumption in combining ASW units into a force was that 

each unit individually experiences alternating periods of being saturated 

and not saturated by contacts it is processing, as determined by the unit 

model.  In addition, a waiting time distribution accounted for the first 

period of the series of busy and idle periods of any ASW unit—with re- 

gard to the time arrival of a specific contact—because the given contact 

could arrive during either a busy or idle time.  The probability that a 

target is ever detected in time for effective counteraction was expressed 

in terms of probabilities of detection by each of the sensors during each 

of their unsaturated periods up until the time that the target penetrates 

the protected zone. 
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B.   Further Computations with the Single Unit Model 

The most complex of all flowgraphs introduced in the previous year's 

work on a queueing model of a single ASW unit was for "time in the sys- 

tem," i.e., the time from the moment a contact arrives at the detection 

periphery to the time that it is finally killed.  Since only true targets 

were considered, all contacts were assumed to be eventually localized, 

attacked, and then killed.  The same methodology would apply equally 

well, however, to a more general semi-Markov model with classification, 

false contacts, and possible loss of contacts. 

Because of the large number of states in the time-in-system flow- 

graph (see Ref. 1, p. 111-39 and Figures 111-19 to 111-22), actual compu- 

tations of distributions for this case were not completed during the 

first year's work.  Still more efficient numerical techniques had to be 

set up early in the current year before results were obtainable.  In 

addition to the continued analytical work, a Monte Carlo simulation model 

was prepared and run in parallel with the analytical model.  Both ap- 

proaches led to almost identical plots for all distributions, i.e., con- 

tact waiting time, ASW system saturated and unsaturated time, and time 

to process a specified contact from opportunity to kill.  The results 

for these distributions and the simulation data will be described further 

below. 

1.   Special Numerical Integration Method for Solving Large Flowgraphs 

A special integration technique, SOR, was used to handle the 
* 

large size of the Markov model for contact time in the system.   The 

advantage of using this method and an explanation of it are laid out in 

We are indebted to Dr. Samuel Schecter who recommended the methods used 
here. 
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Appendix B of Ref. 1.  Steps were taken to reduce integration time of 

this large system of equations to as low a value as possible per inte- 

gration step.  Some convergence difficulties were encountered for the 

over-relaxation iterations, as the method is quite critical with regard 

to choice of the over-relaxation parameter uo.  A detailed discussion of 

the problems associated with the selection of a> is given in Appendix B 

of this report. 

The analytically computed probability distribution for contact 

time in the system is given in Figure 2.5 along with the simulation data. 

Almost identical results were obtained by the two methods up to t = 0.6 

hours, but the analytical integration was not carried out any further be- 

cause of the relatively high computing cost compared to simulation cost. 

2.   Results of a Simulation Approach 

Although analytical modeling was the primary concern of the 

first phase of the current project, it was decided to compare results 

obtained so far with data collected from a direct simulation of the single 

ASW unit model.  Use was made of the General Activity Simulation Program 

(GASP).  The results obtained from simulation were essentially identical 

to the analytical results.  Figures 2.6(a), (b), and (c) are copies of 

the analytical results (Figure 111-26 of Ref. 1) with the simulation re- 

sults superimposed.  Similarly, Figure 2.7 and Figure 2.2 demonstrate 

the comparison of steady-state and time-in-system results. 

Each integration  step ' here is not the usual  infinitesimal  one, how- 

ever, as we are using Pade approximants of e ^  accurate up to 

||AAt|| m  1 or 2 as opposed to 0.001, or something of that order, in com- 

mon integration.  Hence, only a few "steps" are used in total—by our 

method—to achieve enough data points to plot curves for the desired 

distributions. 
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The fact that simulation verifies the results of the analytical 

work is rewarding because rather complex analytical modeling and computa- 

tion were performed.  The slight differences between some of the simula- 

tion and analytical curves probably result from statistical fluctuations. 

(The simulation was run for an equivalent of up to 10,000 hr of model 

time, thus processing a total of about 35,000 contacts for an arrival 

rate of 3.5/hr.) 

A disappointing feature of the above comparison (in terms of 

the desirability of an analytical approach) is that the simulation 

approach took a great deal less computer effort to obtain some of the 

results, even with highly dimensional Markov models.  Thus, further 

analytical work in the direction of more realistic models—including 

classification, nonexponential distributions for contact arrivals, and 

the like—during the current year had to be restricted to Markov and 

semi-Markov models of modest dimensions, having in the order of 3 to 28 

states. 

C.   Proposed Unit Model Extensions to Represent Classification 

The process of classifying contacts was omitted from the queueing 

models of the first year of the current project so that complexity of 

initial models could be reduced and analytical approaches could be tested 

on more tractable computational problems.  This section describes how 

classification may be included within the same analytical framework. 

To include classification in the queueing models, the dimensionality 

of an associated Markov process imbedded in the queueing process has to 

be increased.  Classification is basically a decision process whose func- 

tion is to separate true from false contacts; therefore, at least these 

two categories of contacts must be considered.  In practice, several 

categories are used, but model construction was begun with the categories 
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possible sub, nonsub, and certain sub.  Furthermore, classification is 

not always perfect; hence, there will be actually six significant cate- 

gories of contacts as shown in Table 2.1.  The false nonsub category acts 

Table 2.1 

SIGNIFICANT CATEGORIES OF CONTACT 

Contacts Classified 

True 

False 

Possible sub 

Possible sub 

Certain sub 

Certain sub 

Nonsub 

Nonsub 

II  .  ,11 as a  sink ; that is, any contacts falling into it are assumed not to be 

picked up again as possible subs.  All contacts start out as possible 

subs, by the definition of contact.  It is presumed that true and false 

contacts might obtain different transition rates among the three classi- 

fication categories.  Also, all transition rates would probably vary 

with the contact's position in the queueing system and with the degree 

of congestion of the system. 

Two main proposed approaches to specific formulation of a single 

ASW unit queueing model have evolved during the current project. 

Model 1—Classification is assumed to be performed "instantly" just 

before any previously modeled transition of the Markov model (except for 

an arrival), i.e., at the completion of a detection service, a localiza- 

tion service, and the like.  This approach is relatively easy to imple- 

ment because it merely modifies the manner in which transitions take 

place in the Markov models developed to date and extends them to include 

the extra categories of contacts mentioned above.  Thus, just at the 

completion of detection of a particular contact if that contact moved 

in the previous model to the localization server, it would now move to 
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it as still a possible sub with a certain probability, or as a certain 

sub with another probability, or it may exit into the false contact bin 

with the remaining probability.  Similarly, at the completion of a locali- 

zation service, contacts would split off into different categories. 

Presumably, the probability of classification—i.e., passing from the 

possible sub to either the certain or nonsub states—would be modeled 

with a higher and higher probability as a contact progresses further and 

further into the queueing system.  This model is relatively easy to imple- 

ment by simulation, and initial analytical effort has been made to set up 

the appropriate Markov model. 

Model 2—An alternative approach is to assume that classification 

is a process in which the decisions are made at separate times from the 

times of a contact's transition from one queueing service to another in 

the system.  One way to handle this is to regard classification as being 

performed by a separate server whose completion of service competes with 

others in the Markov model for determination of the next transition.  In 

practice, classification is really accomplished jointly by the personnel 

at the various ASW function locations, and presumably a final decision 

rests on the commanding officer who is not associated expressly with any 

one of the servers of our Markov model and receives information from all 

of them.  Thus, it is logical to consider an additional "competing process' 

that contributes to the Markov model's transition decisions and includes 

classification (Appendix A of Ref. 1). 

Because the second model is basically no more difficult to simulate 

than the first one, it was chosen for extending the currently available 

simulation model.  A detailed set of flow charts to implement this ap- 

proach were prepared but not programmed because of the change of emphasis 

toward models that are more easily related to operational parameters. 
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Although the single ASW unit model with classification added was 

not carried through to a computational analysis, recording its conceptual 

attributes is worthwhile.  The structure of either Model 1 or Model 2 

above is depicted in Figure 2.8.  The "Black Box" modeling the classifica- 

tion process will be explained further below.  The dotted lines represent 

the direction of effect of any classification decision.  The assumption 

False 
Contacts 

True 
Contacts 

Contacts 
Classified 
Non-sub 

f-—D <T—(°L}~— L ^~(^y^—^^S^iz 
"Killed" 

Contacts 
K 

/   .- 

Classifier 
"Black   Box" 

FIGURE 2.8      STRUCTURE OF SINGLE-UNIT MODEL  INCLUDING CLASSIFICATION 

was made that a decision to classify a contact nonsub immediately rejects 

the contact out of the system so that other contacts can move up in their 

queues. A decision that some contact is certain sub has been tentatively 

assumed to have the possible effects shown in Table 2.2. 

The features shown in the table model possible effects of a classi- 

fication decision on the operation of the basic single-unit model.  How- 

ever, considering the reverse effect of system state transitions on the 

classification process itself may also be important.  First of all, a 

model of the structure of the "Black Box" in Figure 2.8 must be chosen. 
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Table 2.2 

EFFECTS OF "CERTAIN" SUBMARINE CONTACTS 

Case Result 

A new certain sub contact 
in a queue is held up by 
a not-yet-classified 
contact in next service. 

New certain sub contact 
is in a service. 

The not-yet-classified contact is displaced 
by the new certain sub contact, and the 
former goes back into queue, with all 
service to date invalidated—i.e., it will 
start from scratch the next time it enters 
that service. 

The service rate may possibly be raised, 
thus indicating more concerted effort by 
personnel. 

In the investigations by Operations Research Incorporated (ORI) in a 

parallel effort related to this project,3 the classification process was 

basically represented by a "growth of information" about a contact versus 

statistical sampling of that information to arrive at a classification 

decision.  A simplified view of this approach was adopted by representing 

growth of information as shown in Figure 2.9.  The growth transition rate 

\ would naturally be higher than the regression rate u.  in Figure 2.9, 
c c 

and would thereby ensure that a contact would eventually be classified 

(if it stayed in the system long enough).  The behavior of the model in 

Figure 2.9 would be approximately like that of an "exploding" queue with 

intensity p = \/\j.  > 1, in which the occurrence of a classification would 

INPUT 

(CONTACTS I 

Certain  Sub 
State 

Non- sub 
State 

FIGURE  2.9      A MARKOV MODEL OF THE CLASSIFICATION  PROCESS 
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be represented by an overflow from the truncated queue.  This model might 

even be adaptable to including queueing features separate from those of 

the rest of the model. 

Additional statistical measures expected to be derivable from the 

unit ASW model with classification added are: 

• The distribution of time a true contact spends in the system 

for a given false contact ratio at the detector input. 

• The relative degrees of congestion at various parts of the 

system caused by presence of false contacts. 
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Ill  CONDITIONAL PROBABILITY MODELS 

A.   Introduction 

Basically, two types of effectiveness models are used in ASW studies. 

The first type of model—often called an analytical model—is used to 

estimate (or predict) effectiveness when basic parameters of the problem 

such as detection ranges, sweep widths, environmental variables, and so 

on, are known.  Equations (mathematical or mathematical and logical) are 

given from which system effectiveness may be calculated when these input 

quantities are known or are assumed to be known.  The ASW operations 

modeled may never have actually been performed (nonexistent equipment 

may be included) so that data are unavailable for estimating many of the 

model parameters.  The usual procedure is to use the available data to 

estimate the input variables of the model—which often characterize 

equipment or systems—and to use these data also to structure the model 

wherever possible, and to hypothesize the remainder of the structure. 

The effectiveness measure for this kind of model is often a probability 

of success, such as the probability of a destroyer detecting a submarine, 

or a submarine detecting, classifying, closing, and successfully attacking 

another submarine. 

The second type of model—often called an operational model—also 

requires inputs, but these are directly observed quantities from real 

ASW operations or from ASW exercises.  Instead of assuming values of in- 

put variables and computing intermediate quantities such as conditional 

probabilities, an operational model estimates them directly from observed 

outcomes. 
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A common form of model used both as an analytical and operational 

model is the conditional probability model.  The basic idea is to choose 

a series of requirements necessary and sufficient for mission success. 

These requirements often are directly related to equipment functions or 

system or subsystem functions; often, an interface of a subsystem with 

another subsystem is where achievement of a requirement is to be observed. 

Because the achievement of a requirement is necessarily conditional on an 

opportunity for the portion of the system to meet the requirement and it 

is often assumed to be a probability, this form of model is known as a 

conditional probability model. 

B.   A Conditional Probability Model as a Markov Model 

Conditional probability models can be conveniently described by a 

simple diagram made up of branches and nodes.  These branches correspond 

to requirements and the nodes correspond to cumulative requirements met. 

An example of a typical conditional probability model of the opera- 

tional type is a simplified version of the WSE model developed and used 

in the Big Daddy series of sub-on-sub barrier exercises performed several 

years ago.  The diagram for this model is shown in Figure 3.1.  The labels 

within the nodes, called states, are oversimplified descriptions of 

possible stages in the sequence of events leading to kill.  More complete 

definitions are as follows. 

Opportunity   A detection opportunity is presented. 

Detect        To detect the transmitting submarine given a detec- 

tion opportunity. 

Classify      Correctly classify a submarine as a submarine, given 

that a submarine has been detected. 

Attack        Satisfy attack conditions on the submarine, given 

that the submarine was correctly classified. 

Kill Submarine is destroyed, or placed out of action, 

given that an attack was made. 
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FIGURE 3.1       STATES  IN  THE  WEAPON  SYSTEM  EFFECTIVENESS MODEL 

The arc (or branch) from detect to classify in a sense represents 

the requirements for classification because a transition from detect to 

classify is made only when the classification requirements are met.  Other 

branches may be similarly interpreted by consideration of the nodes (or 

states) they connect. 

The diagram of Figure 3.1 can be modified by adding a node (state) 

labeled fail, for failure to kill the transiting submarine.  Since failures 

can occur by failing to detect given opportunity, to classify given de- 

tection, and so on in sequence, branches can be added to show transitions 

from individual states to Fail as shown in Figure 3.2. 

P(D/0) 

[OPPORTUNITY) —{        DETECT 

FIGURE 3.2  TRANSITION DIAGRAM FOR THE WEAPON SYSTEM EFFECTIVENESS MODEL 

In terms of the diagram in Figure 3.2, a given barrier exercise re- 

sulting in a detection opportunity can be summarized by specifying the 

path followed from the opportunity state to one of the terminal states 

kill or fail.  If states are represented by their first letters, then a 

string of symbols representing the path can be determined from each exer- 

cise.  For example, the path ODCF means the transiting submarine presented 

a detection opportunity, it was then detected and classified by the 
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barrier submarine, but attack was not accomplished; hence, the transiting 

submarine failed in its mission.  The desired path for the barrier sub- 

marine is the unique path from opportunity to kill represented by ODCAK. 

The measure of effectiveness for the barrier submarine mission (WSE) 

is now defined as the probability of kill of a transiting submarine, 

given that a detection opportunity is presented. 

By the use of standard formulas for conditional probability, the 

probability of kill given opportunity can be written: 

P(K|0) = P(D|0) X P(CJO and D) X P(A|O and D and C) 

X P(KJO and D and C and A)    .        (3.1) 

By assumption, however, detect can only occur following opportunity, and 

classify can only occur following detect.  Therefore, the only remaining 

conditions in each conditional probability are the latest ones, so that 

the formula for WSE becomes: 

WSE = P(K|0) = P(D|0) X P(C|D) X P(A|C) X P(K(A)    .    (3.2) 

In terms of the state diagram of Figure 3.2, WSE is the probability 

that a path terminates in kill, given that it started in opportunity. 

If the conditional probabilities of formula (3.2) are recorded on the 

branches of Figure 3.2 as shown, WSE is seen to be the product of the 

probabilities along the path from opportunity to kill.  The value of WSE 

is estimated from exercise data, where each conditional probability is 

estimated by a ratio—number of transitions to next state:  number of 
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opportunities for this transition.  For example, the estimate of P(c|D) 

is: 

number of classifications 
number of detections 

P(C|D) (3.3) 

Now assume that data from a number of transit exercises are avail- 

able, and there are: 

N transits presenting detection opportunity 

n  transits resulting in detection 

n  transits resulting in classification 
2 

n  transits resulting in attack 
3 B 

n  transits resulting in kill. 

The diagram of Figure 3.2 can be used to tabulate these numbers of transi- 

tions, and the result is shown in Figure 3.3. The values at the nodes are 

the numbers of paths entering the given node. 

KILL N—i »-(OPPORTUNITY 1 « A.        DETECT       )— ■*-/      CLASSIFY ATTACK      j  
\v   N    y v^ \^y V^   n2 _• ^3^ 

N  - n!j      ~ ̂ jv^r^- "3  " •  "2 
•^JV"  "3^ 

FAIL 

N - n 

FIGURE 3.3      DATA FOR  THE WEAPON SYSTEM  EFFECTIVENESS MODEL 

Replacing each conditional probability in the definition of WSE by 

its estimate results in the following estimate of WSE. 

n   n   n n. 
1   2   3 4 

WSE = — . — • — • — 
N   n   n n„ 
12 3 

(3.4) 
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Because the n , n , and n  terms all cancel, the end result is 
l'     2' 3 ' 

4 number of kills 
WSE = — =      .  (3.5) 

N   number of transits presenting opportunity 

If a transit presenting an opportunity is considered a trial, and a kill 

is a successful trial, then 

number of successes 
WSE =   (3.6) 

number of trials 

which is the usual estimator for the probability of success for Bernoulli 

trials.  If the assumption can be accepted that a set of transit exer- 

cises can be considered a set of independent Bernoulli trials, then 

simply counting the number of successes would provide this estimate of 

WSE directly. 

The intermediate states (detect, classify, attack) did not matter 

because the transition counting entailed in passing through these states 

cancelled out.  This cancellation will always occur in this kind of model. 

Further discussion of this point will be deferred to Section VII.  At 

this point, it suffices to note that the cancellation occurs when each 

transit begins with opportunity and ends with kill or failure, provided 

that no repeated entries occur in any state. 

The assumption was made above that each exercise could be translated 

into a path from the starting node to either of the terminal nodes without 

returning to any state after leaving it.  In terms of the diagram, this 

means that no path formed a "loop."  If one attempts to calculate success 

probabilities in a problem with loops by the usual conditional methods, 

the results will be in error. 

An example of an erroneous attempt is shown in Figure 3.4, where 

the detect and classify states from Figure 3.2 have been merged for 

simplicity. 
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V 

PATH NUMBER OF 
NUMBER OBSERVED PATH TIMES OBSERVED 

(1) 0 DA K nl 

(2) O D A F n2 

(3) 0 D F n3 

(4) OF n4 

(5) 0 DO DA K n5 

FIGURE 3.4  SUCCESS PROBABILITIES WITH LOOPS (BASED ON FIGURE 3.3) 

Assume that the observed paths and the numbers of times each path 

was observed are recorded as shown on the bottom of Figure 3.4.  For 

example, n paths are designated 0 D A K, meaning that there were n 

occurrences of the sequence Opportunity -» Detect —  Attack -> Kill.  A 

return to an earlier state (a loop) occurs in the last path since oppor- 

tunity/detect occurs more than once in this path.  Because paths 1 and 5 

terminate in kill, the number of successes is (n + n ) and the Bernoulli 

estimator of probability of kill P(K|0) is 
b 

Pb(K|0) = -5— (3.7) 

E-i 
i=l 

In the path of type 5, the opportunity state is entered twice.  That 

is, following an initial opportunity is a first detection, then the con- 

tact is lost, and a second opportunity is presented.  This then presents 

two opportunities. 
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The number of possible transitions between all pairs of states can 

be conveniently recorded on the branches between states as shown in 

Figure 3.4.  To obtain these values, each path through from opportunity 

to kill or fail can be traced and added to the counter on each branch as 

the transition is made, or the number of transitions from the encoded 

path definitions can simply be counted. 

Consider next the usual conditional probability estimator for proba- 

bility of Kill. 

P(K|O) = P(D|O) x P(A|D) x P(K|A) 

number of     number of   number of 
detections     attacks      kills 

X   X .    (3.8) 
number of     number of   number of 

opportunities  detections   attacks 

Using transition data from Figure 3.4 and estimating each fraction as 

(number of transitions out of a state to designated state) 

results in (total number of transitions out of the state) 

n    +n    +n    +2n 
number  of  detections 12 3 5 

number of opportunities  n +n +n +n +2n 
12 3 4 2 

n,   + n    + n 
number   of   attacks 12 5 

number  of  detections       n    +n    +n    +2n 
12 3 5 
n + n 

number of kills       1    5 
number of attacks  n + n + n 

12    5 

Putting these ratios into Eq. (3.8) shows that the number of detec- 

tions and attacks again cancel, resulting in 

n + n 
,    i ,       number of kills 15 .„ „. 

P(K 0)   =    =  .      (3.9) 1 number  of  opportunities       n    +n    +n    +n    +2n 
12 3 4 5 
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The numerator of Eq. (3.9) agrees with that in Eq. (3.7), but the 

denominator of Eq. (3.9) is larger than that in Eq. (3.7) by n , which 
5 

is the number of second opportunities.  Because n  is nonnegative, the 
5 

Bernoulli estimator of Eq. (3.7) cannot be less than the usual estimator 

of Eq. (3.8); that is, 

Pb(K|0) ;> P(K|0)    . (3.10) 

Therefore, the usual estimator of Eq. (3.8) is incorrect; it esti- 

mates a different quantity from P(K|O).  The Bernoulli estimator is the 

correct estimator to use in this situation, and its formula in terms of 

estimates of conditional probabilities will be derived by Markov methods 

in Appendix C on Mason's rule.  The formula, given here without justifi- 

cation, is 

, , ,  P(D|O) P(A|D) P(K|A) 
P(K10) =  1 - P(DlO) P(OlD)      ' (3-11} 

The new conditional probability in the denominator P(o|D) is the condi- 

tional probability associated with the detect-to-opportunity branch. 

That is, it is the probability of another opportunity following detection 

(as contrasted with attack or fail), conditioned on detection occurring. 

Still other loopless estimators may be attempted with conditional 

probability methods.  For example, the return loop from detect to oppor- 

tunity may be simply ignored.  The ratios estimating P(D|0) and P(KJA) 

remain the same, but P(AJD) changes to 

n + n + n 
~,   i x        12    5 P(A|D) = 

/n +n + n \ + n 
\ 1    2    5} c 

because the n returns to opportunity are ignored. 
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Substitution of this value in Eq. (3.8) gives a new estimator 

P(K 0) = 

|n +n +n + 2 n \(n    +n\ 
 \  1   2   3     5/\ 1   5/   

7n T~n    + ~n + ~n + 2 n \[~/n+ ~n + n \ + n ~| 
\ 1    2    3    4     5^L\ 1    2    5/    3j 

which is again incorrect because it differs from the Bernoulli estimator. 

C.   Limitations of Conditional Probability Models 

It was just observed that the probability of success estimator 

arrived at by successive conditioning to form a conditional probability 

model is identical to the estimator for Bernoulli trials when each transit 

exercise started from the same state (opportunity) and ended in success 

(kill) or fail.  (Exercise data of this type will be called "complete" 

exercise data henceforth.)  Further limitations of conditional probability 

models are: 

• Only a limited number of situations are defined—usually 

one-on-one engagements.  Applicability is limited to tac- 

tical situations in which a single set of serial require- 

ments for mission success can be identified. 

• They are static, and therefore problems in which time is an 

essential element may not be capable of being treated. 

Dynamic operational data (such as average time to prosecute 

a false contact) cannot be directly used in estimating the 

parameters of a conditional probability model. 

• They have few if any controllable variables.  Hence, they 

are of limited use in improving equipment or operations. 

They cannot be used to improve tactics. 

• Degrading factors such as false contacts do not appear ex- 

plicitly.  Hence, the quantitative influence of these de- 

grading factors cannot be assessed. 

• Only a limited portion of the available data is used for 

parameter estimation because only static transition data 

can be used to estimate their parameters. 

• They have limited predictive power. 

• Confidence limits are difficult to obtain. 
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In view of these limitations, the following justify the use of a 

conditional probability model. 

• Conditional probability models incorporate all the pertinent 
operational and environmental factors directly and therefore 
require a minimal number of hypothesized relationships. 

• Data are often available from sources other than complete 
exercises.  In particular, data are often available from 
truncated exercises (those beginning in an intermediate 
state/ending in an intermediate state). 

• The value of the probability of success is not the only 
useful information.  For example, breaking down an operation 
into phases and observing transition information as is done 
in estimating transition probabilities often reveals points 
where system operation may be improved. 

• Some transitions may be unobservable, and complete exercises 
may therefore be impossible.  For example, live torpedoes 
cannot be fired at exercise submarines so that the attack- 
to-kill transitions cannot be directly observed.  Data from 
other sources, such as simulation, may have to be used in 
estimating some transition probabilities. 

• The individual conditional probability estimates may be 
studied, analyzed, or estimated as a function of parameters 
of the mission/environment. 
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IV MARKOV AND SEMI-MARKOV MODELS IN ASW EFFECTIVENESS ANALYSIS 

A. Introduction 

In the previous section, conditional probability models were dis- 

cussed and analyzed, and it was pointed out that a conditional probability 

model can be considered a special case of a Markov model.  Moreover, some 

of the limitations on conditional probability models can be removed by 

considering more general Markov models. 

In this section, some additional general reasons for considering 

Markov (and semi-Markov) models for ASW effectiveness analysis are first 

given in outline form.  Following this is a discussion of the measures of 

effectiveness that a Markov model may estimate.  Finally, the steps en- 

tailed in formulating and using a Markov model and in incorporating one 

or more of these measures of effectiveness are briefly discussed.  Later 

sections in the report deal more fully with model formulation and parameter 

estimation. 

B. Useful Properties of Markov Models 

In addition to removing some of the limitations on conditional proba- 

bility models, the reasons for considering Markov models in ASW effective- 

ness analysis are: 

•  Markov models are general and flexible in the following ways. 

- Many, perhaps most, measures of effectiveness used in naval 
warfare studies and analyses can be formulated in terms of 
an appropriate Markov model.  (Conditional probability 
models are a special case of a Markov model.)  New measures 
of effectiveness can also be formulated that may be useful 
where effectiveness has remained elusive. 
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- Markov models can be used at various levels, ranging from 

one-on-one engagements/encounters to the task force level. 

- Markov models offer a way to combine data from diverse 

sources in a single model.  Measures of effectiveness at 

various levels can all be introduced into a single model. 

• Markov models are fundamentally dynamic in nature, but the 

dynamic and static aspects conveniently factor to allow the 

dynamic aspects to be analyzed separately.  Shifting from 

static to dynamic modeling presents new opportunities to 

exploit operational data that are currently not used in 

effectiveness modeling. 

• For certain of the measures of effectiveness, Markov models 

show a remarkable insensitivity to the actual nature of 

the underlying random process.  That is, they are very 

"robust" in the statistical sense. 

• Markov models are computationally convenient. 

- Analytical (closed-form) solutions can be found for small 

models. 

- Systematic computational procedures exist for determining 

-all of the reasonable measures of effectiveness commonly 

used for Markov models of any reasonable size. 

- Many dynamic properties of the model can be routinely 

calculated. 

• Many systematic methods exist for estimating Markov model 

parameters from observed data.  Several of these methods 

employ data not ordinarily used in ASW effectiveness 

modeling. 

• Markov models may be useful for comparing dissimilar models 

and for validating simulation models. 

C.   Measures of Effectiveness 

Four principal measures of ASW mission effectiveness will be con- 

sidered in this report. All of these measures can be defined in terms 

of a Markov process. Many, or perhaps most, measures of effectiveness 

commonly used in naval warfare analysis studies are one of these measures. 
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Probability of Mission Success—In this first measure of effective- 

ness, success must be suitably defined for the mission being considered. 

Classical conditional probability models used in ASW analysis are of this 

type, where success often means kill of the enemy submarine.  In other 

contexts, success may be simply detection of the enemy submarine, or de- 

tection and classification of the enemy submarine.  This measure is funda- 

mentally a static measure. 

To incorporate this measure into a Markov model, a state labeled 

Success must be introduced and made an absorbing (trapping) state.  The 

probability of success will then be the probability of the process being 

absorbed in the success state.  This probability depends on the static 

structure of the Markov process rather than on its dynamics. 

Mean Time to Success (or Mean Time to Fail)—In this second measure 

of effectiveness, for example, an aircraft carrier in the objective area 

may be considered to fail in its mission when an enemy submarine detects 

it. The mean time to detection of the carrier is an appropriate measure 

for many studies. 

In Markov process terms, the success (or fail) state is required as 

above, and success/fail are again made absorbing states.  Methods for 

calculating the mean time to absorption in a designated trapping state 

are available from Markov theory.  The dynamics of the Markov model are 

entailed in the calculation of this measure. 

Probability of Success (or Fail) at or by a Specified Time—In this 

third measure of effectiveness, if an aircraft carrier can be considered 

to succeed in its mission after no detection for (say) ten days, then the 

chosen measure of effectiveness may be 

P(carrier is not detected in ten days)    . 
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Again the Markov formulation requires appropriately defined success/ 

fail states that are absorbing states.  The measure becomes 

P(process is not absorbed in the fail state by time T) 

where T is the specified duration.  This measure again depends on the 

dynamics of the Markov model. 

Probability of Occupying a Designated State at a Randomly Chosen 

Instant of Time—This fourth measure of effectiveness is appropriate in 

situations where mission success cannot be identified with an absorbing 

state, as in a trailing mission. 

In contrast to the Markov formulations of the preceding three 

measures, this measure is defined in terms of the steady-state (as opposed 

to transient) properties of the Markov process.  The measure again depends 

on the dynamics of the process. 

The first of these measures is a static measure and the other three 

are dynamic. However, the static measure is imbedded within the dynamic 

Markov model so that all are computable from a single dynamic model. In 

many contexts, the first three measures may all be incorporated within a 

single Markov model. 

When a Markov model is applied to a real naval operational problem, 

the assumptions required for a Markov model will seldom, if ever, be 

exactly fulfilled.  The four measures vary markedly in their sensitivity 

to the underlying assumptions, however.  The probability of success 

measure is singularly insensitive to the actual nature of the process 

being modeled.  The second measure, the mean time to success (or fail), 

is also very "robust."  The reasons for this insensitivity (robustness) 

are discussed in detail in Section VII.  The last two measures, the 

probability of not failing by time T and the probability of occupying a 
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designated state at a randomly chosen point in time, depend much more 

heavily on the assumptions required for a Markov process.  Both measures, 

it should be noted, are special cases of the probability of occupying a 

state at an arbitrary time t.  For this reason, most of the experimental 

work discussed later in the report has been devoted to finding methods 

for restructuring the state space and estimating the model parameters to 

obtain satisfactory estimates of P(state) as a function of time t. 

D.   Formulating a Markov Model 

1.   Defining a Set of States 

A Markov model basically consists of a set of states and rules 

for determining how transitions will occur between states.  In applica- 

tions to ASW effectiveness analysis, the most basic and probably the most 

difficult step will be defining the set of states.  How the states are 

defined will generally depend on which of the four measures of effective- 

ness is being considered.  A goal would be to find a single set of states 

that is adequate for all four measures. 

In Markov theory, a state essentially describes a possible con- 

dition of the process being modeled.  All possible conditions must be 

anticipated and states defined accordingly; at any instant of time, the 

Markov process must be in some state but not be in more than one state. 

In operational terms, the states must be defined so that the state can be 

determined for each point in time when what actually transpired during 

the ASW operation (or exercise) is known.  Thus, from the definition of 

the set of states and suitable information about the exercise (say from 

the analysis report), a sequence of states can be determined that repre- 

sents that exercise.  This sequence, together with the times at which 

transitions between states were made, will often comprise the basic data 

for estimating the parameters of a Markov model. 
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A special feature of many of the Markov models considered in 

this report is that the process starts in a single state that can be 

designated the starting state.  For the first three measures of effec- 

tiveness, there must also be a set of terminal (absorbing) states; often, 

the states of success and fail will suffice.  In ASW operations, a natural 

starting state is often either search or detection opportunity. 

2.   Example of a Set of States 

The conditional probability model (WSE model) discussed in the 

previous section had states denoted opportunity, detect, classify, 

attack, kill, and fail.  The process makes a transition from opportunity 

to detect when detection occurs, and the state remains detect until 

classification'(i.e., the classify state is entered) or failure occurs. 

The terminology can sometimes be misleading:  note that to be in the de- 

tect state means that detection has occurred but neither classification 

nor failure has yet occurred. 

The critical part of the definition that is impossible to 

satisfy in practice is the requirement that knowledge of the state alone 

determines how the transition to the next state shall be made.  More 

specifically, the requirement is that all transitions shall be made at 

random by consulting a set of transition probabilities associated with 

the state being occupied.  Emphatically, because transitions out of a 

designated state will sometimes be made to one state and sometimes to 

another in no way implies that the transitions can be adequately described 

by a set of probabilities associated with the occupied state.  That is, 

not all transition behavior, even apparently random behavior, can be 

described by a Markov model. 

Later sections of this report deal with the problem of formu- 

lating a Markov model for a stochastic process whose states do not 
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satisfy the Markov property.  Various attempts are made to restructure 

the state space by adding auxiliary states so that the new set of states 

more nearly satisfies the Markov requirements. 

3.   Estimation of Markov Model Parameters 

When a satisfactory set of states has been found, with or with- 

out the aid of chi-squared "goodness of fit" tests, the next step is to 

estimate the model parameters from the available data.  Since all the 

measures of effectiveness can be calculated in terms of the model param- 

eters, the model construction is then complete.  Parameter estimation is 

covered in more detail in Section VI, and the calculation of the measures 

of effectiveness from estimated parameters are detailed in Section V. 

A major part of this report concerns the methods for estimating 

the parameters in a Markov model defined to determine one or more of the 

measures of effectiveness listed above.  The methods must assume observable 

data from fleet operations and exercises as their basic inputs.  The ob- 

servable data need not be limited to that conventionally used in static 

models such as conditional probability models, however.  Indeed, one of 

the principal benefits of a change from static to dynamic modeling may 

be that potentially more data are available from operations and exercises 

with which to construct and validate effectiveness models. 

The parameters of a conditional probability model are usually 

estimated from transition data; that is, from counts of the observed 

numbers of transitions between the states of the model.  Additional 

potential data available for estimating the parameters of a dynamic 

Markov model include such quantities as the: 

• Average time each state is occupied. 

• Average time of the first entry into each state. 
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• Average length of time spent in each state i before 

its transit to another state j. 

• Mean time to absorption in designated absorbing states. 

• Probability of occupying each state as a function of 

time. 

In more sophisticated applications, the variances of these various times 

may be used as well as the mean values. The equations relating many of 

these quantities to basic parameters of the process are linear and thus 

imply that suitably modified least squares methods can be used to esti- 

mate the basic parameters when the equations are inverted. Since three 

of the four principal measures entail the estimation of the probability 

of occupying a state as a function of time, special emphasis has been 

placed on methods for estimating parameters to make P(state) as a func- 

tion of time adequately fit the observed data. 

The complementary side of the shift from static to dynamic 

modeling is also important.  A dynamic model with its parameters can be 

used to predict properties of the system or operation being modeled. 

These predictions can then be compared with observed data to determine 

the adequacy of the model and to suggest changes in model structure or 

parameters.  Static models are more limited in this respect; with less 

structure in the model, fewer predictions can be made. 
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V  BASIC MARKOV CHAIN THEORY 

In this section, the basic concepts of Markov chains are summarized 

and formulas are derived for computing several measures of effectiveness 

when the basic parameters (the transition probabilities) of the Markov 

chain are known.  The development here is algebraic and uses matrix nota- 

tion and operations for brevity and compactness.  Other derivations, 

often carried out using flowgraph methods, are given as needed in later 

sections.  A single example of a Markov chain with two transient states 

and two absorbing states follows the theoretical development. 

A.   States, Transitions, Paths, and Loops 

The principal elements of a Markov chain (the simplest Markov 

process) are a set of states and a set of transitions between states. 

A state is basically the description of a possible condition of a system 

and the selection of a set of states is a crucial and often difficult 

task in applications.  In this section, the states are simply designated 

by integers 1, 2, ..., N. 

States must be defined so that the system being modeled is in one 

and only one of the states at any given time.  For a Markov chain, the 

transitions between states (changes of state) are defined at integer 

times n = 1, 2, 3, ....  By convention, the process starts in some state 

(usually generically designated as state i) at time n = 0 and makes its 

first transition to a state j at time n = 1. 

The Markov chains of interest here have one or more absorbing states 

which are states that are never left once they are entered.  Entry into 

an absorbing state is associated in applications with the end of the 
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process since nothing of interest happens afterward.  Absorbing states 

in this report are generally defined by mission success (the success 

state)/mission failure (the fail state).  Other states are transient 

states by definition.  Eventually, if the process continues long enough, 

some absorbing state will be entered to end the process. 

A transition diagram may be constructed for any Markov chain.  It 

consists of nodes representing the states and branches (or arcs) that 

represent possible transitions.  Figure 5.1 shows an example with four 

states—two are transient and two are absorbing.  For concreteness, 

states 1 and 2—the transient states—may be identified with a surface 

SEARCH 

PROSECUTE 
FALSE CONTACT 

FAILURE TO DETECT SUBMARINE 

DETECT SUBMARINE 

FIGURE 5.1  TRANSITION DIAGRAM FOR FOUR-STATE MARKOV CHAIN 

ship searching for a submarine and prosecuting a false contact.  The 

success state (state 4) may represent detection of a submarine; corre- 

spondingly, the failure state (state 3) may be associated with failure 

to detect.  As shown by the diagram, transitions take place between 

states 1 and 2 as the ship first searches, then prosecutes a false con- 

tact, then returns to search and so on.  Transitions from a state to 

itself (self-transitions) represent waiting times or holding times in a 

state; the branches on the diagram showing self-transitions are called 

self-loops.  A path from one state to another consists of a sequence of 
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branches from one state to another and may be of various lengths.  A 

path from a state back to itself without visiting any state more than 

once is called a loop.  Thus the path from state 1 to state 2 and back 

to state 1 is a loop. 

B. Transition Probabilities 

Transitions are made from state to state in accordance with a set of 

transition probabilities that are the only numerical parameters of a 

Markov chain.  One probability is defined for each branch of the transi- 

tion diagram because the lack of a branch implicitly means that the corre- 

sponding transition probability is zero.  These probabilities may be 

arranged in matrix form, with the rows being associated with the transi- 

tions out of a state and the columns being associated with transitions 

into a state.  In a stationary Markov chain, the transition probabilities 

do not depend on time and are denoted by p  .  The formal definition is: 
ij 

p  = P (state at time n is iI state at time n - 1 is i) for 
ij ' 

all states i, j and all times n = 0, 1, 2, .... 

C.   Partitioned Form of the Transition Matrix 

The transition matrix for the Markov chain in Figure 5.1 is denoted 

by P, with elements p...  It can be partitioned according to transient 

and absorbing states and the resulting submatrices denoted by Q, R, and 

the identity matrix I.  That is, 

P = 

"pll P12 P13 P14~ 

P21 
p 
22 

j 

P23 P24 

0 0 1 0 

0 0 0 1 

Q   R 

0   I 

(5.1) 

61 



where the submatrices Q and R are defined by 

Q 
Pll   P12 

P     P 21     22 

R = 
P13    P14 

P     P 
23    *24 

(5.2) 

and I is a 2 X 2   identity matrix. 

In general, Q is a square matrix of dimension r, where r is the 

number of transient states.  Matrix R has r rows and a columns (i.e., 

it is dimensioned r X a), where a is the number of absorbing states. 

The identity is dimensioned a X a.  It should be noted that rows of P 

are associated with the state occupied before a transition, and columns 

of P with the state to which the transition is made.  Thus, the submatrix 

Q is associated with transitions from transient states to transient 

states, and the submatrix R with transitions from transient states to 

absorbing states.  The identity matrix I is associated with the transi- 

tions from absorbing states to absorbing states.  Since absorbing states 

are defined as states that are never left once they are entered, the 

probabilities are unity on the diagonal and zero off the diagonal. 

D. Multistep Transition Matrices and Absorption Probabilities 

The transition matrix P defines transition probabilities for single 

transitions.  If P is multiplied by itself, the transition matrix for 

two consecutive transitions is obtained with elements denoted by a super- 

script "2" to denote the number of consecutive transitions. 

■ ft?) (5.3) 

If the matrix multiplication is carried out in using the partitioned 

form on the right side of Eq. (5.1), the result is expressible in terms 
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of the submatrices of P which have the same dimensions as the original 

partitioning.  Equation (5.4) gives the result: 

r 
2 

p   = 

Q     (I + Q)R 

0 I 

(5.4) 

In the example,both identity matrices I are of dimension 2; in general 

the dimensions differ. 

Successive multiplication of P by itself yields transition matrices 

for larger numbers of consecutive transitions.  The n-step transition 

n 
matrix P  is readily shown to have the partitioned structure shown in 

Eq. (5.5). 

n — 

n 
Q (i  + Q + Q2 +   ... 

n-l\ 
+ Q      )R 

0 I 
(C) (5.5) 

This form reveals the process dynamics.  The submatrix Q represents 

those series of n transitions that remain in transient states for all n 

transitions.  In cases of interest in this report, the process will al- 

n 
ways be absorbed in an absorbing state so that all elements of Q will 

approach zero as the number of transitions n becomes infinite. 

The other submatrix associated with starting the process in transient 

2 n-1 
states is(I+Q+Q +...+Q  )R.  Multiplying in the R and expanding 

into its component terms gives Eq. (5.6). 

2    3 
R+QR+QR+QR+ 

n-1 
+ Q  R (5.6) 

The first term, R, represents those cases where absorption occurs on the 

first transition.  The second term, QR, represents transitions that 
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remained in the transient states for one transition and were absorbed on 

the second transition.  Later terms represent absorption after some number 

of transitions from the starting transient state to other transient 

k 
states, followed by absorptions.  In general, Q R corresponds to absorp- 

tion on the (k + 1)   transition—the first k transitions were between 

st 
transient states and the (k + 1)   transition to an absorbing state. 

By means entirely analogous to those used to sum a geometric series, 

imit of the sum in Eq. (5.6) can be shown to 

necessary auxiliary formula is shown in Eq. (5.7) 

CO 

n        V^ n +... =2^Q = 
n=0 

Therefore, the "infinite step" transition matrix, which is the limit of 

Eq. (5.5) as n becomes infinite, has the form shown in Eq. (5.8). 

the limit of the sum in Eq. (5.6) can be shown to be (I - Q)  R.  [The 

I+Q+Q2+ ... +Qn+ ... = >  Qn = (I - Q) l .]    (5.7) 

n      no 
lim P  = P  = 

(I - Q)  R 

0 

(5.8) 

Only the last a columns associated with absorbing states have nonzero 

entries.  In particular, the submatrix (I - Q)  R gives the absorption 

th 
probabilities for all starting states.  That is, the (i,k)   element of 

-1 th 
(I - Q)  R is the probability of being absorbed in the k  absorbing 

state, given that the process started in state i at time zero. 

This result is usually obtained by setting up a system of simul- 

taneous linear equations in the unknown absorption probabilities.4  It 

will be convenient to denote the matrix (I - Q)  R by A, with elements 

aik- 
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E.   z Transforms 

Many quantities besides the absorption probabilities a   just found 
ik 

by matrix multiplication can be obtained by using z transforms that are 

also called geometric transforms.  The z transform is analogous to the 

Laplace transform but is easier to grasp intuitively because the variable 

z is associated with the number of transitions made between states. 

Some additional notation is needed at this point.  Let the matrix 

$(n) be the matrix whose elements <t>  (n) are the probabilities of oc- 
ij 

cupying state j after n transitions (i.e., at time n) when the process 

started in state i at time n = 0.  Let S(n) be the state at time n. 

Equation (5.9) defines $(n), and Eq. (5.10) relates $(n) to the transi- 

tion matrix P. 

$(n) = P[S(n) = j|s(o) = i] = I«, .(n)] (5.9) 

l(n) = Pn = (p^n))    • (5.10) 

The z transform of a sequence of quantities [f(n)], which may be 

scalars or matrices, is defined to be the infinite sum 

f(z) = \_]  f(n)zn   . (5.11) 

n=0 

Applying this to the sequence of matrices §(0), $(1), $(2), ... and using 

Eq. (5.11) results in Eq. (5.12). 

CO 00 

$(z) =y] $(n)zn = ^ Pnzn   . (5.12) 

n=0 n=0 
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Using the general relationship in Eq. (5.7) after replacing Q by Pz re- 

sults in Eq. (5.13). 

?(z) = (I - Pz) (5.13) 

Each element <5>  (z) of the matrix in Eq. (5.13) is a function of z 
ij 

called the transmission from state i to state j.  From Eq. (5.7),   the 

th 
(i,j)   element has the form shown in Eq. (5.14) when states i and j are 

distinct. 

,   , (2)   2   ,      (3)   3 
>     (z)   =  p     z + p       z+p       z+ 
ij ij ij ij 

(5.14) 

F.   Inversion of the Matrix (I - Pz) and Applications 

By the use of the partitioning shown in Eq. (5.1), the matrix I - Pz 

can be written in the form of Eq. (5.15). 

I - Pz a 

I - Qz -Rz 

1(1 - z) 

(5.15) 

The inverse of I - Pz is easily verified by direct matrix multiplication 

to be the matrix shown in Eq. (5.16). 

r 
(I - Qz) 

(I - Pz) 
-1 

(I - Qz)~ Rz 

1 - z 

1 - z 

(5.16) 

Each of the matrices in the top row is useful for deriving formulas for 

calculating effectiveness measures.  It should be noted that the 
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n .      -1 n 
coefficient of z  in the expansion of (I - Qz)   is the matrix Q  that 

occupies this same position in Eq. (5.5). 

Similarly, the coefficient of z  in the expansion of 

(I - Qz)~ Rz 

2 n-1 
found in the upper right position is(I+Q+Q + ... + Q   )R, which 

occupied this same position in Eq. (5.5).  The (1 - z) term appearing 

in the denominator of Eq. (5.16) has the function of accumulating the 

probabilities in the absorption states.  When this factor is ignored and 

z is set equal to unity, the upper right hand matrix reduces to 

(I - Q)  R = A, the matrix of absorption probabilities found earlier in 

Eq. (5.8). 

The elements of the submatrix (I - Q)   that keeps recurring are 

th 
also meaningful quantities:  the (i,j)  element is the mean number of 

entries into a transient state j before absorption occurs, given that the 

process is started in state i. 

To show this, let (I - Q)   be denoted by T, with elements t. .. 

Define random variables x  (n) and e  by 
ij        iJ 

(1   if S(n) = j 

x. .(1) = J (5.17) 
1J      (O if S(n) f-  j 

e   = >^ x  (n) (5.18) 
ij  ^—4    ij 

n=0 

where the subscript i again indicates that the process starts in state 

i at time n = 0.  From Eq. (5.18), the mean value of e. . is 
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. . = >  x. .(n)   . (5.19) e 
ij  

n=0 

Because x  (n) has only two values (unity and zero), its mean is 
ij 

x .(n) = 1 • P[S(n) = jIS(0) = 1] + 0 • P[S(n) t  j|s(0) = 1] 

= <t>  (n) = p n     . (5.20) 

Therefore, the mean number of entries into a transient state j before 

absorption (e .) is 

—  V*  (n)   + . . = 7     P. . = t. 
n=0 

by Eq. (5.14) with z = 1 and the definition of t 

^7~ = >  P(tl) - t. . (5.21) 

n=0 

ij 

If the process is truncated after the M  step (instead of being 

allowed to continue until absorption occurs), the mean number of entries 

into j before absorption or truncation is 

M M                                                    CD                                                         CO 

              V^   ^    (n)       V*    (n)         V"^       (n) 
e. .(M)   =   >      x. ,(n) =   >     p. .     =   >     p. .     -     >        P. . 
ij             Z—i    iJ Z—/    ij         Z—/    iJ           Z—/       iJ 

n=0 n=0                  n=0                  n=M+l 

 , th 
Thus, e. .(M) is seen to be the i,j  element of the matrix 

(l-Q^d-Qr^d-Q^-Q^d-Q)-1 

(5.22) 

-1   / M+l    M+2      \ 
= (I - Q)   - (Q   + Q   + ...)    .  (5.23) 

Truncation at M is therefore accomplished by premultiplying the funda- 
-1      „ ,,      M+l 

mental matrix (I - Q)   by a  correction factor  I - Q 
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In the untruncated case, the average number of transitions before 

absorption when the process starts in state i can be denoted by e..  Its 

value is obtained by summing over all r transient states 

r 

e~ = >  t .   for i = 1, 2, .... r   .        (5.24) 
l  Z_^ ij 

j=l 

In applications later, the mean number of entries into state j will 

be associated with the mean time spent in state j before absorption, 

i.e., before the end of the exercise.  One parameter estimation method 

will be developed by using a matrix T whose elements are the average 

total time spent in each of the transient states during the exercise. 

For calculation of a useful effectiveness measure, however, a different 

mean time is needed:  the mean time until absorption, given that absorp- 

tion occurs in state k.  This quantity e(i,k) is also calculated from 

the elements in the partitioned form of (I - Pz)   but is somewhat more 

difficult to derive. 

G.   Probability Generating Functions 

Returning to the z transform of the one-dimensional sequence f(0), 

f(l), f(2), ..., we can interpret f(n) as the probability that an integer- 

valued random variable X assumes the value n.  This transform, known as 

the probability generating function of the random variable X, is defined 

by 

00 CO 

f(z) = >  f(n)zn = >  P(X = n)zn (5.25) -£ «■>■"-£ 
n^D n=0 

and can then be differentiated with respect to z to obtain 

00 CO 

f'(z) = V^ nf(n)zn-1 = V^ nP(X = n)zn~    .      (5.26) 

n=0 n=0 
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When z is set equal to unity, the result is the expected (mean) value 

of X:- 

CO 

E(X) = f'(z = 1) = >  nP(X = n) (5.27) 

n=0 

It will be necessary to know later that the second moment of X and 

hence 
2 

its variance (var X;   or  a  )   can also be found by 
A 

different iating 

f(z). Specifically, the second derivative eval uated at z = 1 eq uals 

E(X2) - E(X) 

00                                        00 CO 

t" (z = 1) = >  n(n - 1)P(X = n) = >  n P(X = n) - V^ nP(X = n) 
n=0                  n=0 n=0 

= E(X2J - E(X) (5.28) 

Since the variance of X is defined as the mean of the square of X minus 

the s quare of the mean of X, we have 

var X = E(X2) - E2(X) = JE fX j - E(X)~j + |E(X) 
2  "1 - E (X)J 

= f"(z = 1) + f'(z = 1) - [f'(z = = 1)]2 
• (5.29) 

In the matrix in Eq. (5.16), the individual elements of the sub- 

matrix (I - Qz)  Rz/(1 - z) are the generating functions of the cumula- 

tive distribution of the number of transitions before absorption.  Two 

changes must be made to use these elements: 

•  The (1 - z) must be dropped because it accomplishes the 

accumulation; dropping the (1 - z) leaves the conditional 

probability generating function of the density function of 

the number of transitions. 

•  The appropriate absorption probability a-k must be used to 

divide what remains after the factor (1 - z) is dropped so 

that the conditioning on absorption in state k is reflected. 
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*th , -1 
Algebraically, the (i,k)   element of (I - Qz)  Rz divided by a. — 

1 K 
,th ,     -1 

the (i,k)   element of (I - Q)  R—is the probability generating function 

of the number of transitions before absorption in k, given absorption in 

k and starting state i.  The first derivative of this generating function, 

evaluated at z = 1, is the desired measure of effectiveness e(i,k). 

Differentiation of the probability density function may be carried 

out in matrix terms by using the auxiliary formula 

~  (I - Qz)"1 - (I - Qz) XQ(I - Qz) *    . (5.30) 
dz 

Differentiating M(z) = (I - Qz)  Rz as a product results in 

— [M(z)] = (I - Qz)~ Q(I - Qz)" Rz + (I - Qz)  R    .   (5.31) 
dz 

When evaluated at z = 1, this expression reduces in a few simple steps to 

[(I - Qz)Rz]|z_i = (I - Q)" [(I - Q)~ R] = TA    .   (5.31) 
_d_ 

dz 

The matrix on the right is therefore equal to the product of the funda- 

,-1 mental matrix T = (I - Q)   and the absorption probability matrix 

A = (I - Q)  R, both of which are elements in the top row of the parti- 

tioned form of (I - Pz).  in Eq. (5.16). 

The (i,k)   element of Eq. (5.32), denoted by e(i,k), is the mean 

time to absorption state k, given absorption in state k and starting 

state i at n = 0 

(i,k)  element of (I - Q)~ {_(.!-  Q)~ RJ 
'    P(absorption in state kjstarting state i) 

r 

Et  a /a     . (5.32) 
ij jk  ik 

j=l 
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e 

The equation A = TR = (I - Q)  R can be made quite intuitive when 

t   is known to represent the average number of transitions into state j 
ij 

before absorption, given starting state i.  The product t  p  is the 
ij jk 

mean number of times that state k is entered from state j, given starting 

state i.  The sum over all transient states j corresponds to the inner 

product of row i of T = (I - Q)   and the column of R that represents 

state k.  The value of the sum is the mean number of entries into stat 

k, given starting state i.  Because a single trial is implicit in the 

calculation of this mean, the absorption probability itself equals the 

mean number of entries: 

E(number of entries into k|starting state i) = 

1 X P(absorption in state k|start in state i) 

+ 0 X P(absorption in state other than k|start in state i) 

* 
This result is found by a different method.5 

Another measure useful in some contexts is the probability of not 

* th. 
failing before a specified time.  The (i,k)   element of 

M-lx 
(I+Q+...+Q   )R is the probability of occupying absorption state 

k at time M (i.e., the probability of being absorbed in k at or before 

time M).  Therefore, the probability of not failing by time M is 

p  (M) = 1 - P(absorption into the fail state f by M) 
if 

th / M-l\ 
=  1 -   (i,f)       element  of   (I  + Q +  ...   + Q      JR .      (5.33) 

Reference  5,   Vol.   I,   Equation 4.1.117. 
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Operationally this quantity may have an interpretation such as the 

probability of surviving (or remaining undetected) for at least M time 

intervals. 

2 M-l 
The sum I+Q+Q +...+Q   is easily shown to equal 
Mv,    _ -1 (I-Q)(I-Q)  , so that the measure p. (M) also depends on the funda- 

mental matrix T = (I - Q)  .  Specifically 

p~7(M) = 1 - Ri,f>   element of (l   -  QM j( I - Q)~ RJ    . (5.34) 

M       -1 
The matrix (I-Q)(I-Q)   has elements that represent the mean number 

of entries into state j in the first M-l transitions; that is, the mean 

number of entries matrix (I - Q)   corrected for truncation at M. 

H.   Summary of Effectiveness Measures Derived 

In summary, the submatrices T = (I - Q)   and A = (I - Q)  R found 

in the partitioned form of (I - Pz)   [Eq. (5.16)] have the following 

uses and interpretation when the process starts in state i at time n = 0: 

• The elements aik of A = (I - Q)~ R are the probabilities of 
absorption in state k, as measures of effectiveness, they 
are the probabilities of mission success.  When premultiplied 
by (I - Q ), the elements are the probabilities of absorption 
by time M; the (i,f)tn element of the product is (1 - proba- 
bility of the mission not failing by time M). 

• The elements t.. of T = (I - Q)~  are the mean number of 
entries into a transient state j; they represent the mean 
time spent in state j during the exercise.  The sum 

Z% 
is the mean time before absorption; operationally, this is 
the mean duration of the exercise. 
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The (i,k)th element of the product TA = {(I - Q)-1(I - Q)_1R} — 
when divided by the corresponding element a-k of A—is the 
mean time to absorb in state k, given absorption in state k. 
Operationally, these times are the mean time until mission 
success (or failure) occurs, given that success (or failure) 
occurs. 

I.   A Four-State Example 

Four states, the allowed transitions between these states, and the 

values of the transition probabilities p  are shown in Figure 5.2. 

SEARCH 

PROSECUTE 
FALSE  CONTACT 

FAILURE  TO   DETECT 

*-(   4   I       DETECTION   OF   SUBMARINE 

FIGURE 5.2      TRANSITION  DIAGRAM WITH TRANSITION  PROBABILITIES 

The transition matrix is 

P = 

/l 5 1 

4 8 16 16 

3 1 3 1 

8 2 32 32 

0 0 1 0 

0 0 0 1 

c:) (5.37) 

where the submatrices Q and R are 
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(5.38) 

The fundamental matrix (I - Q)   = T is found by first calculating 

(I - Q). 

3 
4 
3 (I - Q) =1  t " I   • (5.39) 

Inverting this matrix results in 

(I - Q)   =1 „,    „„ I (5.40) 

Therefore, if the process starts in the search state the average 

number of entries into the search state (before absorption) is 32/9 and 

the average number of entries into the prosecute false contact state is 

40/9.  Since these are also the average lengths of time spent in the 

respective states, the process spends more time prosecuting false con- 

tacts than it does in searching.  The sum of the elements in the first 

row (32/9 + 40/9 = 72/9 = 8) is the mean time until absorption, or the 

mean duration of the exercise given that the exercise started in the 

search state.  The absorption probability matrix (I - Q)  R = A is 

A =  „.      II „     ,  =  „     ,      .        (5.41) 
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When starting in search, the probability of detection is 13/36 and 

the probability of failing to detect is 23/16 since the second column 

represents the absorption state 4 (detect),   and the first row is asso- 

ciated with starting in state 1 (search). 

Conditional mean times to fail and detect are obtained from computing 

(I - Q)  (I - Q)  R = TA and normalizing by dividing by the appropriate 

absorption probability.  The result is the matrix 

^1696 X 36 896 X 36\ 
     \  /8.193    7.658\ 

, 324 X 23 324 X 13 I  /              \ 
[e(i,k)] =1 s                    . (5.42) 

'              ' 1704 X 3 888 X 3 /                 / 
       /   \7.889    8.222/ 
324 X 2 324  / 

Reading from the first row to reflect starting in search (state 1) 

results in 

e~(l,3) = mean time to fail given that failure 

ultimately occurs = 8.193 

(5.43) 

e(l,4) = mean time to detect given that detection 

ultimately occurs = 7.658 

As a check, one may verify that the weighted sum of these conditional 

mean times—where the weights are the corresponding absorption probabili- 

ties—equals the mean duration of the exercise. 

The probabilities of fail and success at time M are more difficult 

th 
to obtain numerically because the matrix Q must be raised to the M 

4 
power.  Choosing M = 4 arbitrarily and calculating Q  gives 

M    4 
Q  = Q = | I   . (5.44) 
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The probability of detect by time M = 4 is therefore 0.160 and the proba- 

bility of fail by that time is 0.254. 

The imbedded chain corresponding to Figure 5.2 is shown in Figure 

5.3 and was obtained from Figure 5.2 by removing the self-transitions at 

states 1 and 2 and normalizing the remaining transition probabilities to 

SEARCH 

PROSECUTE 
FALSE  CONTACT 

FAILURE TO DETECT 

DETECTION  OF SUBMARINE 

FIGURE 5.3       IMBEDDED CHAIN   FOR  FIGURE  5.2 

other states.  Transition probabilities p  now have a different meaning. 
ij 

They are conditioned on leaving state i: 

p'  = P[S(n + 1) 
ij 

= j|S(n) = i and S(n + 1) ^ i] 

for i = 1, 2}   and all j 

The transition probability matrix for the imbedded chain P  is 
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p' = 

1° 
5 1 -Lt 
6 12 12 

3 
0 

1 1 

4 16 16 

0 0 1 0 

0 0 0 1 

(5.46) 

(I - Q )   works out to be 

(I - Q') 
-1 

24 20 

9 9 

2 
24 
9 

(5.47) 

so that the mean number of entries into states 1 and 2 are 24/9 and 20/9, 

respectively.  In terms of the original chain, 24/9 is the mean number of 

searches before absorption and the mean number of false contact prosecu- 

tions, respectively.  Since the average time in the search state per 

entry into search is 1/(1 - 1/4) = 4/3, the average time in search before 

absorption is 

24  4  32 
(mean number of searches) X (mean length of one search) = — X — - —   , 

which agrees with the mean time in search calculation performed above in 

the original chain. 

It can be easily verified that absorption probabilities are the same 

for the imbedded chain as for the original chain, i.e., 

A' = (I - Q')~V = (I - Q)_1R = A (5.48) 
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VI  PARAMETER ESTIMATION FOR MARKOV PROCESSES 

A. Introduction 

Section V outlined Markov chain theory and derived matrix formulas 

for calculating three measures of effectiveness:  P(success); mean time 

until mission failure, given that failure occurs; and P(fail does not 

occur by a specified time M).  All of these measures were calculated in 

terms of the transition probabilities p 
ij 

In analytical models such as those in Ref. 6, the transition proba- 

bilities are found by analytical means.  However, for reasons indicated 

in Section III-A, operational models are of more interest in this report 

and require statistical methods to estimate parameters from operational 

data.  Several methods for estimating parameters are developed in this 

section, assuming that the state space is given.  Least squares and qua- 

dratic programming methods are shown to be applicable in many situations. 

Some of the parameter estimation methods are applied to artificial prob- 

lems and to simulation in Sections IX, XI, and XII. 

Weighting methods for combining two or more estimates of a parameter 

are treated in Section XIII. 

B. Factoring the Estimation Problem 

In some applications, factoring the parameter estimation into two 

problems is worth consideration. The first problem is to estimate the 

parameters of the imbedded Markov chain, where this chain is found from 

a given chain by removing all self-transitions and normalizing. Alge- 

braically, the p are set to zero for all transient states i, and the 
ii 

other p  in the same row are divided by 1 - p  so that the sum of the 
ij ü 
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outgoing probabilities is unity: 

»   —  -  h - n  1 = 1 for all transient states i 
1 - p..   1 - p.. V    ii/ 

The imbedded chain for the four-state example of Figure 5.2 was shown in 

Figure 5.3 of Section V. 

Note that transitions before absorption in the imbedded chain are 

always to a different state.  In this chain, the amount of time spent in 

a transient state is not properly accounted for; hence, the correspondence 

between state and time is lost.  In particular, P(state) as a function 

of time and such quantities as mean times till absorption are generally 

different from the corresponding quantities in the original chain.  How- 

ever, since transitions out of a state occur to other states in the same 

ratio as in the original process, the absorption probabilities are iden- 

tical to those in the original process. 

Inasmuch as the time relationship is destroyed in the imbedded chain, 

it is considered static in the same sense that a conditional probability 

model is static.  Putting the self-transitions back in makes the model 

dynamic.  Fortunately, the self-transitions can be added to the imbedded 

chain without disturbing the static (transition) structure, which implies 

that the static and dynamic aspects of the model can be studied and 

analyzed somewhat independently.  This separation of estimation into two 

parts (imbedded chain and holding time) is used in later examples and 

is explained in Subsection D. 

C.   Estimating Transition Probabilities 

1.   Using Transition Data (n^j) 

In a true Markov context, the most desirable data for estimating 

transition probabilities are counts of the number of transitions (n. .) 
ij 
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from state i to state j for all states i and j.  Transition counts may 

be available for either the original or the imbedded Markov chain.  In 

the original chain, at least some of the n  will be nonzero; but in the 
ii 

imbedded chain, all n  are zero by definition.  When the n  for the im- 
ii ij 

bedded chain are given, the parameters p   that are found will be for the 
ij 

imbedded chain; other data must be used to estimate the p  and to nor- 
ii 

malize the p  by multiplying each by the factor p  .  Let 
ij ii 

n  = observed number of transitions from state i to state j 
ij 

N 

= number of transitions out of state i n = 7  n 
i  L~l    i J 

j=l 

Then the quantity p  is the optimal estimator for p  in both 
ij ij 

the maximum-likelihood and minimum chi-squared sense: 

P. . 

n /n    for all i,j when n > 0 
ij  i i 

otherwise 

Obviously, each p  lies in the closed interval (0,1).  Also, by the 
ij 

definition of n , the sum over j for a fixed i is always unity, 
i 

This estimator is entirely analogous to that used to estimate 

the parameter p in a series of Bernoulli trials because it equals the 

ratio of the number of successes to the number of trials.  Furthermore, 

p  is easily shown to be unbiased (its expected value is p  ) and to be 
ij ij 

the minimum variance unbiased estimator.7  With these properties, it is 

unlikely that this estimator can be improved upon.  The difficulty with 

this estimator is primarily that considerable effort may be required to 

determine the transition counts; currently, they are rarely given in 

ASW exercise reports. 
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Determination of the n  from an ASW exercise is simple in 
ij 

principle.  From the beginning of the exercise, the times when state 

changes (transitions) occur are recorded with the corresponding transi- 

tion times.  Whenever it is known whether the process is Markov at the 

outset, it is desirable to first represent the data in path form; that 

is, first record the sequence of states entered from start until absorp- 

tion, together with the times of transition.  A sample path that starts 

in state 1 and is absorbed in state 5 may be represented by two rows of 

data—one row for the states entered and another for the transition times. 

An example is the data 

state   sequence: 12123125 

transition times:  0  5  6  8 9  11 12 14 

An equivalent path form that can be used when transitions can 

be assumed to occur at only integer times is the sequence 

111112112331225 

th 
Reading from the left, the n  element of this sequence is the observed 

state at time n, for n = 0, 1, ..., 14.  For theoretical purposes, the 

second representation is preferable because all the information is shown 

in transition form.  In either case, the n  can readily be determined 
ij 

from the path data by simply counting transitions.  The matrix of n. 

for the single path shown above is shown in Table 6.1.  A single  one" 

is shown for the 5-5 transition; this results in the desired estimate of 

unity for state 5 that is assumed absorbing. 

The transition counts for other paths may be accumulated in 

the same n  matrix, and one matrix for each path need not be recorded. 
ij 

For example, if the data consist of three paths shown on the left for a 
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Table 6.1 

TRANSITION COUNTS n  FOR A SINGLE PATH 
ij 

1 j     1 2 3 4 5 n 
l 

1 5 3 0 0 0 8 

2 1 1 1 0 1 4 

3 1 0 1 0 0 2 

4 0 0 0 0 0 (0) 

5 0 0 0 0 1 (1) 

five-state process with absorbing states 4 and 5, the matrix is that 

shown on the right in Table 6.2. 

Table 6.2 

TRANSITION COUNTS n  FOR THREE PATHS 
ij 

Paths States 
\ 

j     1 2 3 4 5 n 
i 

1 1 112     3 5 1 2 2 1 1 0 6 

2 1 2     2     3     1 4 2 0 1 3 0 0 4 

3 2 3     3     13 4 3 2 0 1 1 1 5 

4 0 0 0 1 0 (1) 

5 0 0 0 0 1 (1) 

When experimentation is needed to find a satisfactory set of 

states, it may be desirable to proceed differently.  First, a number of 

variables may be selected from which states are to be defined; these 

values are recorded continuously by going through the exercise or sequence 

of tactical events one time.  For a tentative definition of state space, 

one can proceed through the list of these variables to determine when 
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changes of state occur and to record the transitions accordingly.  When 

the situation is complex, having a computer program compute the n. . from 

lists of the auxiliary variables may be desirable.  Suggestions about 

variables to choose for defining states are made in Section IV-D-1. 

2.   Using Mean Time-in-State Data (t^j) 

In some tactical situations in which state is defined, the 

total time spent in each state is tabulated in the exercise report.  An 

example of this form of data is the tabulation of the total time the 

Orange submarines are in the defined states for the recent series of 

UPTIDE exercises.  If the underlying process is Markovian (that is, if 

these states are actually states in the Markovian sense) these data may 

be used to estimate the transition probabilities in a Markov chain.  Be- 

cause less data collection and data analysis effort should be required 

to obtain the mean time-in-state data, developing a parameter estimation 

method for these data is worthwhile. 

At least two theoretical difficulties must be faced, however. 

First, the theory requires the mean time data to be available for all 

possible starting (transient) states.  Second, only the transition proba- 

bilities for the transient states can be determined so that additional 

data are required for the calculation of absorption probabilities and 

other quantities involving transitions into absorbing states. 

The basis for the estimators is the theoretical expression given 

in Section V that relates the transient portion (Q) of the transition 

matrix (P) to the mean number of entries into each transient state before 

absorption.  The matrix equation given there was 

T = (I - Q)~ (6.1) 
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where the elements of T, denoted by t. ., were the mean numbers of transi- 

tions into transient states j before absorption, conditioned on the 

process starting in state i. 

The elements of Q are simply p  for transient states i and j. 
ij 

When estimates of all the t.. are given, we may denote the resulting 

matrix by T, with entries \     .  When the starting state is always state 

1 (as it is assumed to be in most of this report), the second and later 

rows of T may possibly be filled in by using the same data used in the 

first row after all data were removed before the first entry into state 

i.  (This method was used successfully on an example reported in Section 

XII which may be consulted for details.) 

The straightforward approach to estimating the elements of Q 

in Eq. (6.1) would be simply to invert both sides and transpose elements 

and thereby obtain a matrix § whose elements are estimates of the transi- 

tion probabilities p 
ij 

Q = I - (T)~     . (6.2) 

When a satisfactory fit is obtained, this simple method may be adequate. 

However, possible difficulties include: 

• T may not have an inverse, or may be very nearly 

singular. 

• Some elements of Q may be negative, or greater than 

unity. 

• Nonzero elements may result for some transitions known 

to be physically impossible. 

A procedure that circumvents the first and last difficulty may 

be illustrated by an example.  Suppose the T matrix is given for a process 

with three transient states (designated 1, 2, 3) and two absorbing states. 

On physical grounds, let us rule out transitions 1-1 and 2 - 3 so that 
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the transient part of the transition matrix is of the form 

P     P 
12   *13 

p     0 
21    F22 

kP31    P32    P33 

(here the carets (") are omitted for convenience).  Thus, I - Q becomes 

■P        -P 
12        13 

1 - p22      0     |   . (6.3) 

-p        1 - p 
32 F33, 

Equation (6.1) was 

T = (I - Q) 1 . (6.4) 

Premultiplying each side of Eq. (6.4) by (I - Q) in Eq. (6.3) gives 

(I - Q)T = (I - Q)(I - Q)"1 = I    , (6.5) 

or by expansion and transposition 

QT = T - I    . (6.6) 

The matrix equation in Eq. (6.6) represents a set of nine 

simultaneous linear equations in the seven unknown transition probabilities 

for the allowed transitions.  When (I - Q) has an inverse, solving Eq. 

(6.6) is equivalent to solving this set of equations, which in expanded 

form are: 
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tp      +tp      =t      -1 
21P12 31*13 11 

t     p       + t     p       =  t 
22*12 32*13 12 

t     p       +  t     p       —  t 
23*12 33^13 13 

t     p       +  t     p       =  t 
11F21 21^22 21 

tp       +tp       =   t       -1 (6.7) 
12   21 22   22 22 

t     p       +  t     p       =  t 
13^21 23*22 23 

t     p„     +   t     p       +tp        =t 
11 31 21   32 31   33 31 

tp       +tp       +tp        —   t 
12 31 22  32 32  33 32 

tp       +tp       +tp       =  t       -1 
13p31 23^32 33P33 33 

The equations in Eq. (6.7) may or may not have a solution in the alge- 

braic sense.  However, a least squares solution can always be found. 

Equation (6.7) can be written in the form 

Ap = b (6.8) 

where A is a 9 X 7 matrix, p is a 7 X 1 matrix (i.e., a column vector 

with 7 components), and b is a 9 X 1 matrix.  Specifically, p may be 

T 
chosen as the vector (p „, p  , p  , p  , p  , p  , p „) , where T de- 

12' F13'  21'  22'  31'  32'  33  ' 

notes transpose, and b may be chosen as the column of values on the right 

side of Eq. (6.7).  The first row of A is then (t  , t  , 0, 0, 0, 0, 0), 

the zeroes reflecting the absence of all p  excepting p _ and p  in the 
ij 12      13 

first equation of Eq. (6.7). 

The modern approach to least squares proceeds directly from the 

matrix form in Eq. (6.8).  The sum of the squared deviations is 
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2 T / T  T T\ 
d     =   (Ap -  b)   (Ap -  b)   =     p  A     -   b   j(Ap  -  b) 

RT TTT TTT T T , 
=pAAp-pAb-bAp+bb=pAAp-2bAp+bb .      (6.9) 

2 
The derivative of the scalar d with respect to the vector p is then 

found and set to zero: 

T      T 
2A Ap - 2A b = 0    . (6.10) 

Solving this by inverting yields the unconstrained least-squares solution 

v-1 

p = (A
T
A] ATb   . (6.11) 

Nothing in this formulation constrains the unknowns p  to 
ij 

satisfy the probability constraints 

3 

p  > 0    , and    7  p   <.  1    . (6.12) 
ij X—' ij 

j=l 

If these constraints are badly violated, a quadratic programming formula- 

tion may be used.  Appendix D explains quadratic programming in more de- 

tail, but here it need only be said that arbitrary linear inequality and> 

equality constraints may be introduced; and in particular, the probability 

constraints Eq. (6.12) can be added.  The general form of a quadratic 

program is:  find a vector x to minimize 

T 
z = x Dx (6.12) 

subject to constraints 
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A x = b 
1     1 

A x ä b 
22 , 

(6.13) 

A x ä b 
3     3 

x > 0 

where D, A , A , A  are given matrices of constants; the b , b , b  are 
'      1'      2'     3 1' 2'     3 

given column vectors; and the scalar z (the sum of the squared deviations) 

is to be minimized. 

3.   Using Mean First-Passage Times (m^-) 

When a set of states is defined for a class of tactical situa- 

tions, it is possible to obtain transition probability estimates from data 

on the time between the entry into one state and the entry into another. 

To illustrate this, suppose that search, detect, and classify are states 

in a Markov chain model.  Then such quantities as the average time from 

the beginning of search until detect (i.e.., entry into the detect state), 

the average time from the beginning of search until the time of entry 

into classification, the average time from the entry of detection until 

the entry of classification can be estimated from operational data.  These 

quantities may themselves be considered as dynamic measures of effective- 

ness since they depend upon the dynamics of the ASW system or unit being 

considered.  For the current purpose, however, they are not considered as 

end-products but as parameters required for the estimation of the four 

measures of effectiveness considered earlier.  All of these (end-product) 

measures of effectiveness are calculated from the transition probabilities 

in a Markov chain model so methods are necessary for estimating the transi- 

tion probabilities from time-between-states information. 
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In technical terms, a set of quantities of interest from which 

transition probabilities may be estimated are called first-passage times. 

The first-passage time from state i to state j is defined as the number 

of transitions to arrive in state j, given that the state is i at time 

zero.  First-passage times are defined only for recurrent chains; that 

is, for Markov chains all of whose states can be reached from any other 

state.  When all states do not communicate in this manner, a modified 

definition entailing conditional first-passage times may be used; but this 

results in very complex expressions.  Therefore, the formulation given 

here is for the case all states communicate; by definition, there are no 

absorbing states.  The measure of effectiveness appropriate to these 

situations is the probability of occupying a designated state at a ran- 

domly chosen time; this is appropriate, for example, for the trailing 

mission. 

Data requirements are a complete set of estimates of mean first 

passage times (m. .), where "complete" means all (i,j) combinations that 

are physically and logically possible.  As in the previous section, using 

data from paths that all start in the same state may be possible by ig- 

noring all transitions before the first entry into state i when data for 

row i are being calculated. 

A possible objection to the use of mean first passage time data 

may be raised at this point.  When the analysis required to obtain the 

mean first-passage times is considered, it seems that paths must be traced 

from each possible starting state (i) to the entry of an absorbing state 

(k), and that this tracing would yield path information that can be trans- 

lated into transition counts n  .  Since methods are available for esti- 
ij 

mating the transition probabilities p   from the n  , it then might be 
ij ij 

asked whether the mean first-passage times contribute anything new to the 

problem.  The answer to this will depend on whether the process is actually 
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m       = l+>      P.   m   . 
ij Z—/     ij   kj 

k=l 
&j 

Markovian, the measure of effectiveness, and what the goodness of fit 

measure is for the model.  In a true Markov context where only the ab- 

sorption probabilities are desired, the transition information is suffi- 

cient.  However, if the model is realistically at least somewhat non- 

Markovian and is also required to fit dynamically [in the P(state) as 

a function of time sense] then the transition probabilities derived from 

the mean first-passage times should give useful additional information. 

Equations relating the mean first passage times and transition 

probabilities may be found in any standard text on Markov chains.8 

Letting m  be the mean first passage time from i to j and p   be the 
ij ij 

usual transition probability from i to j, the equations are 

N 

1 < i, j £ N    . (6.14) 

2 2 
This is a set of N  linear equations in the N unknown transition proba- 

bilities.  In theory, with exact values of the m.  known, there should be 

a unique solution to this linear system that yields the transition proba- 

bilities.  The probabilities comprising the solution should automatically 

satisfy the nonnegativity and row sum conditions 

N 

p  > 0    ,    >^ p . = 1    for i = 1, 2, ..., N    .  (6.15) 
ij Z—4     ij 

j=l 

In applications, however, there are two reasons why straight- 

forward solution of the set of linear equations in Eq. (6.14) will seldom 

be possible.  First, the model will rarely be exactly Markovian as re- 

quired by the theory.  Second, the amount of data is limited so that the 

estimators m  will have noise components even in the Markovian case. 
ij 

Three outcomes are possible when one attempts to solve the system in Eq. 

(6.14). 
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(1) The system of equations in Eq. (6.14) may have a solu- 
tion with nonnegative p. . which also satisfies the row 
conditions in Eq. (6.15). 

(2) The system may have a solution with some p^ • outside 
the range zero to unity, or the row conditions in Eq. 
(6.15) may not be satisfied. 

(3) The system may be inconsistent and hence have no 
solution. 

The last two outcomes are the result of the non-Markovian of the real 

processor noise components in the estimators.  Only the first outcome 

gives an acceptable solution, but the second and third possibilities are 

often to be expected in working with a real problem. 

a.   Constrained Least Squares 

A first method for obtaining an acceptable set of estimates 

from the set of equations of Eq. (6.14) will be through the application 

of constrained least squares.  This model is ordinary least squares aug- 

mented by linear constraints on the unknown quantities.  The constrained 

least squares formulation follows.  The solution always exists, but the 

nonnegativity constraint may be violated. 

First, the system in Eq. (6.14) is replaced by a single 

quantity to be minimized: 

N   N  /    N 

d2 = >  > I1 +  >  P. m . - m . 1    .        (6.16) 
i=l j=l \        k=l 

2 
The quantity d  is obviously nonnegative and the lowest possible value is 

therefore zero in Eq. (6.16).  The value zero is achieved as a minimum 

if—and only if—the set of equations in Eq. (6.14) is consistent.  To 
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ensure acceptability of the minimizing set of p  , however, it is neces- 
ij 

sary to add the row constraints of Eq. (6.15).  The constrained least- 

squares problem then takes the form of minimizing 

2 
d by selecting p. .    (i,j = 1, 2,   ...,   N)       (6.17) 

to satisfy 

for i = I,   2,   3,   ..., N    .        (6.18) 

2 
The double summation defining d  can be rewritten in matrix form as 

2 T 
d  = (Ap - b) (Ap - b) (6.19) 

when b is an observable random vector, p  is the unknown vector of tran- 
ij 

sition probabilities, and A is a matrix of constants determined from the 

m  .  The row constraints of Eq. (6.19) also can be written in matrix 
ij 

form as 

Bp = k   , (6.20) 

where k is a known vector and B a known matrix.  The solution to Eq. 

(6.17) subject to Eq. (6.18) is then that given in Appendix D with the 

covariance matrix V equal to the identity matrix 

-1 

(k - Bp (6.21) - p + [(A
T
A)~V][B(A

T
A) 

-l -ir ■      --1 "i ...ii  _   T 

B 

where p is the solution to the unconstrained problem 

-1 

= (ATAJ ATb   . (6.22) 
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b.   Quadratic Programming Solution 

The constrained least squares formulation minimized a sum 

of squares subject to linear constraints derived from the row constraints 

that the sum of the transition probabilities out of each state should sum 

to unity.  Unfortunately, there is a possibility that some probabilities 

may lie outside the range zero to unity while satisfying the row condi- 

tions.  When the nonnegativity constraints 

p  > 0   for i.j = 1, 2, 3, ...,   N (6.28) 
ij 

are also introduced, the result is a quadratic program to minimize 

T     T 
p Dp + c p 

subject to 

p > 0 

(6.24) 

Ap = b 

where 

p is the unknown vector of transition probabilities 

b and c are known constant vectors 

D is a known matrix of constants which is symmetric and positive 
semidefinite. 

4.   Using the First and Second Moments of First-Passage Times 

In addition to the mean first-passage times (the first moments), 
2 

estimates of the second moments of first-passage time (s ) may also be 
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available.  For a Markov chain, the following relations hold when all 

states communicate.5 

N 
2 

s  = 2m  - 1 + 
ij    ij 

k-i 
k^j 

EP.,s. .    i,j =1, 2, ..., N   .   (6.25) 
ik ij 

This set of equations has nearly the same form as Eq. (6.14) in the pre- 

vious section, and the same remarks apply concerning its solution.  In 

particular, a constrained least-squares approach may be taken to obtain 

the estimators p  when the estimates of the first and second moments 

_2      lj 
m   and s   are available.  Since second moments are used as well as first 
ij      ij 

moments in the fitting process, the statistical properties of the esti- 

mators can be expected to be at least somewhat improved. 

5.   Using P(State) as a Function of Time 

Other data that may be available in ASW applications are esti- 

mates of the probability of occupying each state as a function of time. 

For a defined set of states with time origin at the beginning of the 

engagement or exercise, the estimates of P(state) for a fixed t may be 

from the ratios 

Number of times state i was 

A r   ,   „    ,     ,   . occupied at time t 
p[S(t) = i] = y (t) =    (6.26) 

i     Number of times state i could have 

been occupied at time t 

for i -  1, 2, ..., N.  That is, y.(t) is proportional to the observed 

number of times that state i was occupied at time t, the denominator 

being the normalizing constant that makes the sum of the y.(t) equal 

unity for each fixed t.  Other ways of obtaining the estimates y.(t) may 

be found more practical in some applications.  In economics applications, 

the y (t) are often from such aggregated quantities as the relative pro- 
i 

portions of total sales for each competing firm in a particular market. 
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Analogous quantities may be found in ASW, for example, by considering the 

relative proportions of time a submarine spends in various information 

states.  Because deceptive tactics and decoys are used to force a sub- 

marine into lower information states, this may be a way to study the im- 

pact of particular tactics/decoys on transition probabilities and hence 

on measures of effectiveness derived from these transition probabilities. 

To proceed with the mathematical development, let the N state 

process be observed from time t = 0 until time t = T.  Let the given data 

be 

y.(t) = P[S(t) = j]    * = °>   l>   '"'   I .       (6.27) 
J J = 1, 2, ..., N 

Then the relationship between the unknown transition probabilities p 
ij 

and the observed y.(t) are 
l 

N 

y.(t) =V y.(t- Dp..+u.(t)   I     ]' I'  '"' I   .    • (6-28) 
J      Z~/  i        ij    J       t = 1, 2, . . .  T 

i=l 

If the y.(t) were the P[S(t) = j] from a true Markov process 

with parameters p. ., all the error terms u.(t) would be zero.  The approach 

will again be to apply least squares; a set of p  is sought to minimize 
ij 

the sum of the squared errors. 

Vector and matrix notation is needed for compactness.  Accord- 

ingly, let 

y. = ry-(1)> y.<2>> -->  y.(T>l (6.29) 

. - (piy   P2J, ..., PN.)
T (6.30) 

fu.(l), u.(2), ..., u.(T)~] (6.31) 
L j      -1 1  -I 

P 
3 
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A  = 
j 

yx(0) y9(o) 

yx(t - 1)   y2(t - 1) 

yi(T " 1}    y2(T " 1} 

y (0) 

y (t - i) 

y (T - l) 

(6.32) 

(note that A. is actually independent of j).  Then in partitioned (com- 

ponent) form, the Eqs. (6.28) become 

N 

] 

I 

3 
1 

3N 

+ 

u 
1 

U2 
• 

UN 

(6.33) 

Equations (6.33) can be written more compactly as 

y = Ap + u (6.34) 

Conventional least squares can be applied:  minimize the sum of the 

T 
squared deviations u u by minimizing 

T T 
u u = (y - Ap) (y - Ap) (6.35) 

whose solution is the optimal estimator p 

/ T \~  T 
p = (A Aj  A y    , (6.36) 

provied that A A is nonsingular (which it is when A. is of full rank). 
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It can be shown that the row sum conditions (I p  =1 for all 
j iJ 

i) are automatically satisfied by p, but the p  are not guaranteed to 
ij 

lie between zero and unity.9 

Estimates that restrict the transition probabilities to the 

range (0,1) may also be developed.  One again minimizes the scalar 

quantity 

d  = (y - Ap) (y - Ap)    , (6.37) 

subject to the row constraints and p > 0.  This is again a quadratic 

program, soluble with a modified simplex algorithm. 

The least-squares model is applied to the y (t) calculated from 
i 

an artificially constructed non-Markov process in Section XI. 

D.   Estimating the Density Function of the Transition Times 

1.   Introduction 

In a Markov chain, the only parameters are the transition 

probabilities p  ; these determine the static (transition) and the 
ij 

dynamic behavior of the process.  As mentioned in Subsection B, the 

diagonal terms (p  ) determine the holding (or waiting) times in the 
ii 

states and hence determine the dynamic behavior.  It is often convenient 

to estimate the p  after the off-diagonal p  is estimated by data from 
ü ij 

the imbedded chain—that is, from data that depended only on transitions 

made between different states. 

This section begins by showing how to estimate the p  when the 

other p   and average-time-in-state data (T ) are available.  The method 
ij i 

can be applied when it can be assumed that the holding time in a state is 

geometrically distributed and is independent of the state to which the 

98 



transition is made.  Since these conditions are often not satisfied in 

applications, methods are given that may be tried when the dynamic fit 

obtained by using a Markov chain is unsatisfactory.  Techniques of this 

kind generally use auxiliary states to represent the transition time be- 

tween selected pairs of states (i,j).  When the density function of the 

transition times is chosen to be the functional form h  (n), the model 
ij 

is called a semi-Markov model; some techniques for estimating the 

parameters of these densities conclude the section. 

2.   The Holding Time Parameter (p^) 

In the discrete time Markov process (Markov chain), the transi- 

tion probabilities determine both the static (transition) and dynamic be- 

havior of the process.  In particular, the density function of the time 

spent in a state is geometrically distributed, independent of the destina- 

tion state.  Denoting the self-transition probability of state i by p.., 

the probability of making a transition to some other state at time n is 
n— 1 

p   (1 - p  ), because (n - 1) self-transitions (returns to state i) must 
ii      ii 

first occur, followed by a transition to some other state.  Therefore, 

the average number of transitions required to leave state i is 

cu 

nP(state i is left on the n  transition after entry) 

n=l 

= y^ n pn_1(l - p..) = (l  - p..) • — = -    .  (6.38) 
C   ' ii \     11/   \     ii/   /,      \2   1 - p 
n=l (1 - P1±j 

The simplest possible estimation procedure to fit Markov chain 

parameters to observed data on transitions in the imbedded Markov chain 

and to observed average transition time data exploits this formula.  When 

the mean time (T ) spent in each state is known or is estimated from 
i 

operational data, the optimal estimator p  is found by solving Eq. (6.39) 
ii 
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T. = \/(l   - p. ) (6.39) 

for the estimator p  .  The result is 
ii 

p  = 1 - 1/T    . (6.40) 
ii i 

After these estimates of the self-transitions (the diagonal elements of 

the transition matrix P) have been determined, the estimates p  for the 
ij 

other (off-diagonal) transition probabilities for the imbedded process 

can be normalized by multiplying each p  by (1 - p  ).  The resulting 
ij ü 

set of p. . (i,j = 1)   2, . .., N) are nonnegative, satisfy the row con- 

straints for each i, and are therefore feasible estimates of the transi- 

tion probabilities.  This estimation procedure is used on sample problems 

in Sections IX and XI.  Based on these examples, when the actual model is 

non-Markovian and this simple procedure is used without further modifica- 

tions, a poor dynamic fit seems to be expected. 

3.   Adding Auxiliary Delay States 

One possible way to improve the dynamic [P(state) as a function 

of time] fit entails the addition of auxiliary states.  This addition 

does not influence the probabilities of transitions between the original 

states, but does influence the times from one state to another. 

If it is reasonable to assume that the waiting time density is 

independent of the destination state, the natural approach is to increase 

the number of parameters that characterize the waiting time density.  The 

obvious two parameters are the mean and variance of the waiting time.  (A 

Markov chain waiting time density has only a single parameter (p..) that 

determines both the mean waiting time and the variance of the waiting 

time.)  An approach that sometimes works is to add auxiliary delay states, 
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say D. auxiliary states for state i, to give the resulting waiting time 

density function the same sample mean and variance as the estimated waiting 

time density.  If m  is the (sample) mean waiting time in state i and v 
i i 

is the corresponding variance, then the D. should be chosen to satisfy 

D H x— = m    ,   D =: nonnegative integer    (6.41) 
i   1 - p     i i 

ii 

P. . 
11    = v    . (6.42) 

(>-y2 4 

Equation (6.41) was derived to fit the mean waiting time by 

assuming that D delay states (with a mean time of delay D ) are followed 
i i 

by the original state i [with mean time l/(i - p  )].  Equation (6.42), 
ii 

derived to match the variances, does not involve D since the delaying 
i 

transitions always occur and do not involve the variance.  Solving Eq. 

(6.42) for p  , the estimator of p  , gives 
ii ii 

(2 + v-1) ± AA:1 + v:2 

p . =  —*  (6.43) 
11 2 

for the appropriate choice of sign before the radical.  Using this value 

of p   in Eq. (6.41) and solving for the number of delay states D . 
ii i 

D  = m - 7.     . (6.44) 
1    1   1 - p 

ii 

If the computed value of D. is negative, this method will not work.  In 

any case, rounding to an integer is generally necessary and results in 

some error in fit in the mean time.  The fit to the observed mean time 

is usually more important than the fit to the observed variance.  The 

rounded D may now be used to determine a new p  from Eq. (6.41).  Then 
i ii 

the error in variance may be calculated from Eq. (6.42); if the error is 
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not excessive, these modified estimates of p.. and D. may be used in the 

modified Markov chain model with D  auxiliary states. 
i 

A numerical comparison between the original simple estimating 

method and the auxiliary delay states method can be found in Section IX. 

A considerable improvement resulted from the addition of delay states in 

this example. 

4.   Adding Auxiliary States and Transitions 

The delay method described in the last subsection was systematic, 

simple, and permitted the matching of two parameters to an observed or 

theoretical holding time density function.  The method does not always 

work, however, and in any case the auxiliary delay states are not used 

efficiently.  This inefficiency results from the simple form of the tran- 

sitions among the delay states, for each delay state merely 'holds  the 

process in state i for one more transition.  When the fullest possible 

set of transitions are allowed between the auxiliary states, we may ex- 

pect to use the given number of states more efficiently by selecting 

parameters to approximate given holding time densities.  This is the 

approach taken in this section. 

An example is used to illustrate the approach.  Figure 6.1 

shows an example in which three auxiliary states (i , i , i ) and the 

indicated transitions allowed between them have been added to represent 

a holding time density h (n), where h (n) = P (process makes a transition 
i i 

out of state i at time n/state i was entered at time zero). 

For definiteness, suppose that all the conditional transition 

probabilities c   (conditioned on a state change from i to j) are given. 
ij 

These c  are determined from the usual transition probabilities p  by 
ij iJ 

normalizing over the transitions out of state i 
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c. . = P. .//  P.,    for j = 1, 2, ...,   l-l, i + l, ..., N 
ij    ij/Z-^ ik 

' k=l 

All inputs to state i (the original state) are sent to state i ; and 

states i" and i'"  are placed between i  and i as shown, with transition 

probabilities for all auxiliary branches being indicated by a. in the 

diagram.  The overall transition structure of the process is readily 

seen to be unchanged because the transitions from i to any other state j 

occur with the correct probability c. ,.  The structure of the network 

of auxiliary states and transitions added to the original process deter- 

mine the density of the waiting time. 

Ten new parameters (a  through a  ) are shown on the diagram. 

However, the linear (row) constraints 

a + a  + a  =1 
12    3 

a + a + a  =1 (6.45) 
4    5    6 

a+a+a+a   =1 
7   8    9    10 

reduce the number of free parameters to seven.  By allowing these ten 

parameters to vary subject to the three row constraints and the usual 

nonnegativity conditions (a. > 0, we may expect to realize a variety of 

shapes for the waiting time density.  Several examples of densities are 

shown in Figure 6.2 for the parameter sets detailed on the figure. 

Analytically, it is straightforward to determine the probability 

generating function g,(z) of the waiting time density.  The transmission 

from state i  to state i is g (z). 
i 

From Mason's formula in Appendix C, the graph determinant A of 

the auxiliary network is 
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A   =   1  +   z (-a     -a     -a)  +  z/aa     +  a  a     +aa    +aa    +  a  a   ) 
1 4 7/ 1   25 68 14 17 4  7/ 

(-a  a  a    -aaa    -aaa    -   a  a   I  = 
269 168 257 4  7/ 

2 3 
1  + Az +  Bz    + Cz .      (6.46) 

The numerator of the transmission is 

a   (1 -   a    -   a„  -   a„ 
3\ 7 8 9/ 

Kl-a)z+aa(l-a    -a    -a) 
4/ 2  6\ 7 8 9/ 

.09 

.08 

.07 

i r 

i 
\\ 

\ 
\ 

i \ 

PARAMETER  ARRAY    /   a1   a2  a3       0 

a_  a.  a_       0 
5    4    6 

CASE I II I" 

1/3 1/3 1/3 0  .9 .05 .05 0  1/3 1/3 1/3 0 

1/3 1/3 1/3 0  "- .9  .05  .05  0 

1/4 1/4 1/4 0 

0 0 0 1 

CASE       IV 

.09 .05 .05 0 

.05 .90 .05 0 

V VI 

:025 .025 .7 .25   .7 .025    .025 .25 

FIGURE 6.2       DENSITY  FUNCTION  OF WAITING TIME  IN STATE  i 
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Letting A, B, and C be the constants in the graph determinant as in Eq. 

(6.46), the transmission g(z) is then the ratio 

[a II - a  z + a a z   1 - a  -a  -a 
(   \        Ls     4/     2 6 JL    7    8    £Ü 

g (z) =     .   (6.47) 

1 + Az + Bz 4- Cz 

Expanding g (z) in an infinite series in the variable z gives the density 
i 

n 
of the waiting time with the coefficient of z equalling the probability 

st 
that the transition out of i occurs on the (n + 1)   step.  The expansion 

results in complex expressions for the coefficients and therefore does 

not offer a constructive method for finding the a parameters. 
i 

A straightforward method is available for choosing the a  to 
i 

approximate the holding time density h.(n).  If the cumulative distribu- 

tion of the waiting time is denoted by H (n) 
i 

n 

H.(n) = \  h.(m) = P (holding time in i < n)    ,     (6.48) 

m=o 

then H (n) is related to the probability of being absorbed in state 
i 

4(=state i) of■the auxiliary network by 

y (n) = P (absorption in state 4 by time n) = H.(n) 

for n = 0, 1, 2,   ...    .     (6.49) 

Therefore, the probability of occupying one of the states (the absorbing 

state 4) is given as a function of time.  If the probabilities of occupying 

the other states as a function of time were also known, the least squares 

approach given earlier should suffice.  To apply the methods of Section 

VT-C, estimates of the P(state) as a function of time relations ty.(n)] 

for states i = 1, 2,   and 3 should be made such that y (n) > 0 for 
4 x 

i = 1, 2, 3 and £ y.(n) = 1 for all n.  The form of these y (n) should 
i=l  i i 
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not be important, since the modification to the least squares procedure 

will weight the deviations associated with the first three y.(n) much 

less than the relation of interest y (n). 

From estimates of the y.(n) over a range t = 0 to T, formulate 

the estimation problem for the a  can be formulated as the minimization 
i 

problem 

2 T 
minimize d  = (Y - Aa) W(y - Aa) (6.50) 

where the vector a replaces to the vector p in Eq. (6.34) and the weighting 

matrix W is a diagonal matrix.  To weight the y.(n) deviations heavily 

and the others lightly, a matrix W such as that shown in Eq. (6.51) may 

be selected 

w = 1 

» 3T ROWS 

► T ROWS 

3T COLUMNS T COLUMNS 

(6.51) 

The solution for the optimal vector a is again found by dif- 

2 
ferentiating d  in Eq. (6.50) with respect to the vector a, equating the 
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result to zero, and solving for a = a: 

/ T -1 \~  T-l 
a  =   (A W A )  A W y    . (6.52) 

This solution has the same potential difficulties as earlier 

least squares procedures; in particular, some a. may be outside the 

interval (0,1).  As before, Quadratic programming may be used to obtain 

feasible a . 
i 

The auxiliary state method may be used in many other situations 

to approximate holding time densities.  The holding time density may be 

made to depend on the terminal state by adding auxiliary states between 

state i and state j.  That is, auxiliary states and transitions are added 

for each branch of the original transition diagram instead of for each 

state. 

Several destination states j may be handled simultaneously by 

the least squares approach above by introducing a single set of states 

to represent all the transitions out of state j.  Given the transition 

probabilities for the imbedded chain, the (N - 1) densities h. .(n) can 

be accumulated as in Eq. (6.48) to obtain the y (n) 
j 

n 

y (n) = p.  • >  h .(m)    j = 1, 2, ..., N; j 4  i    .  (6.53) 

m=o 

The above least squares procedure can be used with these y.(n) 

(N = 0, 1, 2, ..., T) as data.  Varying numbers of auxiliary states may 

be tried until a satisfactory fit is obtained. 

An example consisting of 3 states is sketched in Figure 6.3. 

States 1, 2, and 3 comprise the original process; states a and b are 

auxiliary states.  All possible transitions between states 1, a, and b 

are allowed, but states 2 and 3 cannot be left once entered.  Twelve 
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FIGURE 6.3      AUXILIARY STATES  FOR  TRANSITIONS OUT OF   1 

transition probabilities and three row constraints are implied by the 

figure so that nine parameters are available to approximate the holding 

time behavior represented by the constants p.p. and the densities 
12'  13' 

h12(n), hi3(n). 

E.   Discrete Time Semi-Markov Processes 

A generalization of a Markov chain is a discrete time semi-Markov 

process.  In addition to the transition probabilities required to define 

a Markov chain, a semi-Markov process also requires the specification of 

a set of discrete conditional density functions h  (n) to define the time 
ij 

of the transition from i to j, given that the transition from state i will 

be to state j.  Thus, the transition out of i can be thought of as being 

made in two steps: 

• The pi • determine the next state (j) as for a Markov chain. 

• The time of the transition (measured from the time state i 

is entered) is chosen randomly from the density function 

h^Cn). 

It is important to note that each semi-Markov process also has im- 

plicit in it a Markov chain called the imbedded Markov chain.  This 
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imbedded chain is determined by the transition probabilities p  alone. 
ij 

That is, the imbedded chain concerns the sequences of states entered by 

the process and ignores times of transition.  The probabilities of ab- 

sorption in Absorbing states are the same for a semi-Markov process and 

its imbedded Markov chain, but all dynamic quantities such as the den- 

sity function of the time of absorption will in general be different. 

Parameter estimation for the imbedded Markov chain of a semi-Markov 

process can be accomplished with Markov chain methods because the transi- 

tion and the dynamic (time-dependent) behavior again factor as they did 

in a Markov chain.  The first step in fitting a semi-Markov process to 

observed data is therefore to fit the imbedded chain; if this cannot be 

fit satisfactorily, the semi-Markov model is inappropriate.  The next 

step is to fit the dynamic behavior; indeed, the approach of the previous 

subsection can be regarded as one systematic method to accomplish this. 

Other methods may also be used for estimating the parameters of the 

h. .(n). Theoretical reasons may sometimes be found for assuming a func- 

tional form for the h  (n); data may then be used to estimate such 
ij 

parameters as the mean and variance of the functional form.  Adding 

auxiliary states to a Markov chain to approximate the semi-Markov process 

is equivalent to assuming a functional form.  The advantage of the auxili- 

ary state method is that the Markov chain formulas can continue to be 

used on the approximating chain. 

Various other methods for estimating parameters in a semi-Markov 

model were investigated during the study.  These results are available 

as internal memoranda and are therefore not included in this report. 

F.   Testing for the Markov Property 

Statistical tests may be devised for testing the reasonableness of 

the Markov assumption with the classical chi-squared goodness of fit 
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test.  One form of this test results from forming cells ' into which 

observations may fall and comparing the observed number of observations 

in each cell with the expected number of observations in each cell.7 

The test statistic is 

* (l     -HIT f 

l-l   f   * nn 
i=l      i 

where 

k = number of cells 

f = observed number of observations in cell i 
i 

TT = probability that an observation falls in cell i 
i 

n = number of observations. 

2 
The test statistic v is asymptotically distributed as a chi-squared 

random variable with (k - 1) degrees of freedom.  When the fit is good, 

the deviations (f - nn ) are small; when the fit is poor, they are large, 
i     i 

A confidence level (a)   (such as 0.95) is arbitrarily set, and the hypothe- 

sis that the data are consistent with a Markov chain model is rejected if 

2 
the value of v    from Eq. (6.54) exceeds the rejection limit found in 

rimm X 

chi-squared tables from the confidence level &  and parameter k. 

A modified version of this classical test can be applied to a Markov 

chain to obtain a test statistic 

T   n 
2 

X(  
t=l i=l 

n-l)T=EEN(t)&i(t>- Vt)lVyi(t) 

which is chi-squared with (n - 1)T degrees of freedom when all y.(t) are 

nonzero.  Definitions of the quantities included are: 
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n = the number of states 

p  = an estimate of p  (i,j = 1, 2, .... n) 
ij ij 

y (t) = the predicted probability of being in state j at time t 
j 

given by 

n 

y.(t) =y y.(t - Dp. .    (j = 1, 2,   ...,   n) 

i=l 

y (t) = observed proportion of times state i is occupied at time 
i 

t (t = 1, 2,   ...,   T) 

N(t) = number of observations at time t. 

(For complete ASW exercises N(t) = N, the number of exercises.) 
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VII  IMPROVABILITY OF THE MEASURES OF EFFECTIVENESS 

A.   Introduction 

The orientation to measures of effectiveness taken in this report 

is that of classical statistics:  the measures are definite, fixed num- 

bers exist in the abstract but are unknown.  They can, however, be esti- 

mated from data—the analyst's task is to devise methods for obtaining 

estimators that are good in the statistical sense.  A good estimator 

should have a small (preferably zero) bias, and its variance should be 

small.  In most ASW applications, the estimators may be assumed to be 

unbiased (the mean or average value of the estimator is the true value) 

so that estimators may be judged by comparing their variances.  For 

practical purposes the smaller the variance, the better the estimator. 

This section addresses the question of improvability of the esti- 

mators of the four principal measures of effectiveness in terms of variance 

reduction when the model parameters must be estimated from fleet opera- 

tional data alone.  It will be shown that: 

(1) The probability of success estimator given by the ratio 
(successes/trials) is essentially unimprovable. 

(2) The mean time until failure, given that failure occurs, 
is improvable by a factor roughly equal to the probability 
of failure. 

The manner in which these conclusions were reached must be discussed to 

properly qualify them.  The first conclusion results from a theorem 

(proved in Appendix E) essentially stating that the "cancellation" noted 

in conditional probability models (see Section III) also occurs in any 

Markov model.  The second conclusion results from a second theorem, also 

proved in Appendix E. 
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B. Approximating an Arbitrary Model by a Markov Model 

In view of the material in the previous sections on parameter esti- 

mation, it seems reasonable to assume that a Markov chain model can be 

constructed to approximate a wide variety of other kinds of models.  For 

example, a Monte Carlo simulation model may be regarded as a Markov model 

whose states are defined in terms of the model's variables.  The descrip- 

tion of the state space would be extremely difficult for large models 

owing to the very large number of states.  There are so many states that 

a given state has almost no chance of being reentered on any given repli- 

cation.  Nevertheless, the basic structure is Markov and the number of 

states is finite. 

The first step in the argument, then, is to assert that the arbi- 

trary effectiveness model being considered can be satisfactorily approxi- 

mated by a Markov chain model with" a finite number of states. 

C. Applying Theorem 1 

When transition data are available to estimate the parameters of the 

approximating Markov chain, the only estimating method needed is the 

simple estimator 

fn /n    for n > 0 
ij  i        i 

P . = < (7.1) 
ij   j 

for n. -  0 

where the n  are the observed numbers of transitions from state i to 

state j and the n are the sums En.  In the section where this esti- 

mator was introduced, it was stated that the quantities p  are optimal 
ij 

according to both the maximum likelihood and the minimum chi-squared 

criteria; furthermore, they are unbiased and of minimum variance among 
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the unbiased estimators.  It is therefore unlikely that the p  can be 
ij 

improved in the statistical sense.  Thus, it appears reasonable that the 

measures of effectiveness calculated from the approximating Markov model 

when the true parameters p  are replaced by their estimates p   [obtained 
ij ij 

from fleet operational data by using Eq. (7.1)] will be as good as or 

superior to other estimators in the statistical sense.  This is the 

second step in the argument.  [It is recognized that the second step 

lacks rigor:  the p.. are not necessarily maximum likelihood estimators 

for the overall (measures of effectiveness) parameters, and maximum like- 

lihood estimators are not always minimum variance estimators.] 

The third step of the argument leading to the conclusions (1) and 

(2) results from the respective application of the theorem and the con- 

jecture.  The theorem states that the absorption probabilities obtained 

-1   * 
from the Markov chain calculation p = [(I - Q)  R]   when the parameters 

s Is 

of Q and R are the estimators p  from Eq. (7.1) are identical to the 
ij   

ratios 

—   number of times absorbed in state k p  _   
k number of trials 

provided that the process always starts in state 1 and ends in some 

absorbing state.  In operational terms, all ASW exercises start in a 

designated starting state and continue until the outcome of the exercise , 

is resolved, that is, until an event occurs to terminate the exercise 

according to rules agreed upon ahead of time. 

The second theorem is similar in form to the theorem 1 but concerns 

the mean time to failure, given that failure occurs.  However, a crucial 

The subscripts (l,s and l,f) denote the element in the first row and 

the s* , f*" columns respectively of the indicated matrix. 
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change is needed in the estimation procedure.  Instead of all the data 

being used to estimate the p  , only the data for paths that terminate in 
ij 

failure are used.  The conjecture is:  the mean time until fail (given 

that failure ultimately occurs) calculated from the Markov formula 

= [(I - Q) \l - Q) 1R]lf/a] 

is identical to the ratio 

—  sum of the numbers of transitions before Failure occurs 
T =   
f        number of trials on which Failure occurred 

D.   Implications of the Theorem 1 

The implications of theorem 1 are numerous and can be viewed in both 

positive and negative senses.  On the negative side, the theorem implies 

that to construct a Markov chain model to obtain an improved estimate of 

P(success) is entirely futile when only data obtained from complete (start 

to finish) exercises can be used because the result is identical to the 

simpler estimate (number of successes/number of trials).  At the outset 

of the current research, this limitation was not recognized; the theorem 

came as a surprise and somewhat changed the direction of the research 

effort. 

Viewed positively, some implications of the theorem are: 

• The probability of success estimator can be improved (in the 
variance reduction sense) if other data are available to im- 
prove the estimates of the Pii. 

• The number of states in the Markov model and the manner in 
which they are defined are entirely arbitrary concerning 
the estimation of p .  State definitions may therefore be 
made based on the need to obtain better estimates of the 
other measures of effectiveness. 
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• The Markov property—apparently required to derive the 

formula for p —is not at all required.  That is, the esti- 

mator (I - Q)~1R is very "robust" in that it is completely 

insensitive to the actual nature of the random process 

generating the sequences of states. 

• It also follows that postexercise analysis of states and 

their transitions is not a critical matter because state 

definitions are arbitrary.  In particular, how the inevitable 

borderline cases are treated in analysis is unimportant so 

long as each trial traced a path from the starting node to 

the correct terminal node. 

• Arguments sometimes used to show the need for "aggregating" 

states to obtain sufficient data for estimating transition 

probabilities are invalid for the probability of success 

measure—the number of states and their definitions are en- 

tirely arbitrary, and the variance of the p  estimator is 

independent of the state space. 

Many of the same implications hold for the second theorem regarding 

the conditional mean time until fail measure.  Overall, the implications 

are more favorable because the mean time estimator uses only part of the 

data available (those paths leading to failure); the remainder of the 

data can be used to improve the estimators p  and hence the conditional 
ij 

mean time till failure T derived from the p  .  The extent to which the 
f ij 

Markov property is required for improving the p  is currently unknown, 
ij 

although experimental work discussed in a later section appears to indi- 

cate that this property is not required.  All that is apparently required 

is homogeneity in the sense that the transitions in the transient portion 

of the Markov chain model should be generated by a random process inde- 

pendent of where the process is finally absorbed. 

The factor by which the variance of T can be reduced should be 

roughly p = probability of fail.  This follows because p  is the approxi- 

mate fraction of the data that is used to estimate T and the variance of 

—     2 2 
the sample mean T  is a /N, where a  is the true variance of the time to r J? rp    7 rp 

fail (T ) and N is the number of trials.  Experimentation with numerical 
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examples in non-Markovian situations with the required homogeneity proper- 

ties may shed some light on this variance reduction question. 
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VIII  PROBABILITY STATE TIME DIAGRAMS 

This study largely concerns the development of methods for applying 

Markov, semi-Markov, or modified Markov methods to real operational 

problems.  Because any real operational problems are unlikely to be 

exactly Markovian, it is necessary to demonstrate that Markov methods 

can be used in non-Markovian situations. 

Three main possibilities to experiment with to obtain data from 

non-Markovian processes are: 

• Operational data from ASW exercises 

• Simulated data from digital computer simulation runs 

• Artificially constructed problems. 

Operational data of the type needed for this study are either unavailable 

in a convenient form or not available at all.  Transition and dynamic 

data (such as mean times between states and transition counts n  ) avail- 
ij 

able from sources such as the UPTIDE analysis volumes are time-consuming 

to extract; therefore, the use of operational data was ruled out for the 

current study.  Data from simulation are easier to obtain, but their use 

would make analysis of Markov methods application more difficult because 

the true probabilistic dynamic structure of the simulation model is in- 

variably unknown.  Thus the third alternative, the use of artificially 

constructed dynamic probabilistic problems, was adopted.   Although the 

problems constructed for study had their own special strongly non- 

Markovian structure, methods that did not exploit it were always sought. 

* 
Some effort was also devoted to applying the methods to data from a 
simulation model (see Section XII). 
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That is, the study of artificial problems with special structure was 

hopefully expected to find methods of more general applicability. 

To create artificial dynamic probabilistic problems sufficiently 

complex to test the adequacy of Markov approximation and sufficiently 

simple to make reasonably straightforward calculations of the true values 

of the quantities of interest is no simple matter.  After some experi- 

mentation, a suitable method was found:  a dynamic probabilistic model 

is defined by a Probability State Time (PST) diagram.  From the PST dia- 

gram the many conditional probabilities, probabilities of state as a 

function of time, and dynamic quantities such as the mean and variance 

of the transition time between selected pairs of states can be readily 

determined in an easily understandable way. 

The concept of defining a random process by a diagram is basically 

simple:  assume that the process depends upon a single random variable u, 

which is assumed to be uniform on the interval (0,1).  This variable is 

to be associated with the vertical dimension on the diagram.  The hori- 

zontal dimension is time (t), and the state changes are specified merely 

by drawing a line in the (u,t) plane.  Thus, a random process including 

the states of opportunity, detection, classifcation, attack, and kill is 

defined in Figure 8.1.  A sample function of the random process, which 

corresponds to an ASW tactical encounter or exercise, is now determined 

from the diagram by choosing a value of u at random, and drawing a hori- 

zontal line u units from the top of the rectangle.  Whenever this line 

intersects one of the lines defining a state change, a transition into 

the designated state occurs and the time at which the transition occurs 

is the corresponding value of t.  Thus, line QL)   represents the sample 

function for which detection occurs at time t , classification occurs at 

time t , attack occurs at time t , and failure occurs at time t .  Note 
2 3 4 

that kill does not occur because the K line representing a transition 
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1   - 

2    - 

3   - 

u =  1 

FIGURE  8.1       ILLUSTRATIVE  PROBABILITY STATE TIME  DIAGRAM 

/—■. 

into   the   kill   state   is   not   intersected  by   line   '1,.      From   t  =  0   to   t   =  t   , y v_y 1; 

the state is opportunity; from t  to t , the state is detect; in general, 

the most recent state change determines the state at time t, which is the 

first intersection to the left of the point on the PST diagram.  The 

sample function represented by line \2)   detects and classifies but does 

not attack and therefore fails.  The sample function for line \3j   detects 

but does not classify and therefore fails.  All fails in this example 

occur at some fixed time large enough to represent the maximum length of 

an exercise.  (The instructions to the hypothetical exercise participants 

were to continue trying to achieve mission success by proceeding through 

the states in sequence until this maximum time, with failure resulting 

if kill has not occurred by the maximum time.) 

The slanted horizontal lines representing state changes in Figure 

8.1 represent conditional uniform distributions. That is, the time of 

detection is uniformly distributed given that detection occurs, 
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classification time (the time classification occurs) is uniformly dis- 

tributed given that classification occurs, and so forth.  However, not 

all these distributions are independent; on the contrary, they are highly 

dependent because all transition times are all uniquely determined when 

u is known. 

Conditional probabilities are easily read from the PST diagram by 

taking ratios of lengths of appropriate line segments.  The probability 

of detection (given opportunity, represented by the vertical line at t = 0) 

is the ratio ab/ac as shown on Figure 8.2, while the other conditional 

e     g 

ui 

1          1 
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1 1 > 

/ 

/D 
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i                                           f                                                            yT 

F 
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I' 

FIGURE 8.2       RATIOS OF   LINE SEGMENTS DETERMINE CONDITIONAL 
PROBABILITIES 
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probabilities are 

P(C/D) = ef/ab 

P(A/C) = gh/ef 

P(K/C) = ij/gh 

P(K/0) = ij/ac. 

Many other conditional probabilities, including those dependent on con- 

ditioning on knowledge of a state at an earlier time, can be found 

similarly. 

A random process defined by a PST diagram has a special structure 

because the probability densities for the transition times are not inde- 

pendent.  (The independence of these densities for Markov and semi-Markov 

processes is one of the most convenient properties of a Markov model.) 

Interdependence is expected to be one of the major difficulties to be 

faced in applications of Markov methods so that experimenting with Markov 

methods on problems with some form of interdependence was considered 

appropriate. 

Even a Markov chain can be approximated by a PST diagram, however. 

Figure 8.3 is the transition diagram of a six-state Markov chain, with 

transition probabilities shown on the branches representing the allowed 

transitions.  In Figure 8.4, a PST diagram shows the density function for 

FIGURE  8.3      MARKOV  PROCESS WITH  SIX STATES 
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FIGURE 8.4      PROBABILITY STATE TIME  DIAGRAM  FOR   FIRST STATE  OF  PROCESS 
IN   FIGURE 8.3 

the transition from Opportunity to Detect.  (The line is drawn for a 

continuous exponential distribution instead of a discrete geometric dis- 

tribution for convenience.) 

Since the time from detect till classification in the Markov chain 

is geometrically distributed given detection (i.e., the time in the de- 

tect state is geometrically distributed), a curve shaped like that in 

Figure 8.4 must be repeated once for each value of u so that the density 

of time to classify—given detection—can be independent of the time to 

detect—given opportunity.  This is impossible geometrically so an ap- 

proximation must be used.  The detection curve can be approximated by a 

number of vertical line segments and a classification curve can be drawn 

for each such vertical line segment as shown in Figure 8.5.  The resulting 

set of lines can approximate the true transition lines as accurately as 
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FIGURE 8.5      DETECT LINE QUANTIZED; CLASSIFY EXPONENTIALS ADDED 
IN   EACH  SEGMENT 

desired by choosing intervals sufficiently small.  Obviously, this pro- 

cedure must be repeated again for later states, with the subdivisions 

getting finer and finer and the curves for later transitions becoming 

increasingly more wild.  It is not proposed here that these approxima- 

tions actually be carried out.  Figure 8.5 is shown merely to demonstrate 

that a Markov chain can be approximated by a PST diagram. 

Just as each Markov process has a Markov chain imbedded within it, 

a PST diagram has a random process imbedded within it. In general, the 

imbedded PST process is not Markovian. (In some cases, as when the im- 

bedded chain has no loops, it will be Markovian. The first example 

studied in this report has an imbedded chain that is Markovian, but the 

second example does not.) 
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It may be mentioned that in certain respects a random process de- 

fined by a PST diagram is more general than a Markov chain, and in other 

respects is less general.  The correspondence between the two classes of 

processes is best seen by thinking of paths through the states as the 

basic elements, not the states and the transition probabilities. 

A Markov chain containing loops has infinitely many paths, each with 

probability equal to the product of the probabilities along the path. 

The PST-defined process has finitely many paths, and each of these paths 

has a probability determined by the diagram. 

If a PST diagram had infinitely many paths, it would be a Markov 

chain if the assigned probabilities for each path could be represented 

as products of probabilities along the respective paths.  In general this 

would be impossible to do, implying that the class of PST-defined processes 

with infinitely many paths is richer than the class of Markov chains over 

the same set of states.  On the other hand, if a Markov chain is limited 

to a finite number of paths on the grounds that all finite problems neces- 

sarily end in a finite period of time, then the PST-defined process is 

somewhat less general. 

An example will clarify the comparison.  Consider the two-state 

process shown in the sketch below.  The path probabilities for three 

selected short paths are: 

Probability 

Path Markov PST 

11 (1 - p)2 
Pl 

12 (1 - p)p P2 
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The probabilities of the three paths may be independently assigned 

for a PST definition; let their values be p , p , p  as shown.  Then the 

processes can be the same only if the probabilities for these paths agree, 

that is. 

2 
(1 - P)  = P1 

(1 - p)p = p 

P .= P3    . 

2 
If these equations have a solution, it must bep  = p, p  = (1 - p ) , 

and p = (1 - p )p  so that p  determines p  and p .  Hence p , p  are 
2       *3  3 3 1      2 l'  2 

not arbitrary and the Markov chain is seen to be more restricted than 

the PST-defined process. 

There are further computational advantages of the PST diagram method 

for defining a random process.  Measuring ratios of line segments has 

shown that certain conditional probabilities are easily determined, and 

other conditional probabilities will be found determinable by essentially 

the same method.  The condition will usually define a subset of the 

probability space which is composed of the union of a number of disjoint 

line segments, and the event of interest will be yet another union of 

disjoint line segments.  The conditional probability is then the ratio 

of the total length of the line segments. 

The dynamic structure of the model, primarily represented by the 

set of probabilities of occupying a state as a function of time, is easy 

to determine from a PST diagram.  To determine the probability of being 

in the detect state at time t, for example, requires summing the lengths 

of all vertical line segments at t which represent the detect state. 
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Since the total length (over all states) of the line segments is unity, 

the sum of lengths gives the desired probability directly. 

Certain kinds of dependence can be incorporated into a problem de- 

fined by a PST diagram.  When compensating factors that tend to make the 

sum of two successive transition times a constant, for example, the hori- 

zontal distance between the two state change lines is that constant.  An 

operational example illustrating this sort of dependence might be the de- 

pendence of time to classify, given detection, for detections delayed by 

an inattentive sonar operator.  If detection occurs late because of lack 

of attention to the sonar scope, the signal to noise ratio may be high 

at detection, implying a shorter time to classify than normal detections. 

Thus, the sum (time to classify, given detection) + (time to detect, 

given opportunity) may tend to be nearer a constant than an assumption 

of independence of stages would imply. 

Although it is not being suggested here that actual ASW operational 

problems are of the type defined by PST diagrams, it is possible to take 

a (necessarily finite) set of real operational data (or simulated data) 

to form the analogue of a histogram in PST form.  Data required are a 

set of paths, each consisting of a sequence of states in the order they 

were entered and the transition times for each path.  Each path could 

then be represented by a series of dots on a horizontal line, as in Figure 

8.6.  The probability variable u has no value to associate with a path, 

which poses a problem for plotting the vertical dimension.  If all paths 

are considered equally likely, the paths should be separated by the same 

distance, with the ordering remaining indeterminate.  In seeking structure 

in the process, one can experiment with various ways of ordering the 

paths.  (If structure can be found, the interesting problem of interpreting 

the probability dimension could then be undertaken.  Intuition suggests 

that the probability variable is in some sense a generalized environmental 
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FIGURE  8.6      HISTOGRAM   FOR  A PROBABILITY STATE TIME  DIAGRAM  FROM 
A FINITE SET OF  DATA 

variable.)  Figure 8.6 shows a hypothetical example consisting of 13 

sample paths for a process with four states.  Dots represent data points 

and connecting lines represent a possible form for the full problem. 
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IX NUMERICAL EXPERIMENTATION:  EXAMPLE ONE 

A.   An Artificial Process 

In this section, a six-state random process is defined by a PST 

diagram so that various methods of estimation may be tried and compared. 

The structure is quite simple (no loops are allowed); each transition 

must be either to the next state on the path to the kill state or to 

fail.  Figure 9.1 shows the PST diagram.  The vertical line at the left 

represents the opportunity state at t = 0.  Transitions to intermediate 

states detect, classify, and attack are to the right, and the rightmost 

lines represent entry into one of the two trapping states kill and fail. 

Because of its choice of states and lack of loops, this example may be 

considered to represent the classical conditional probability model of 

ASW.  The imbedded chain is a Markov chain, but the entire process is 

strongly non-Markovian by its very construction. 

In this artificial example, no attempt was made to choose realistic 

values for the time required to change from state to state.  As can be 

noted from the form of the diagram, all distributions representing times 

between states are conditionally uniform.  For example, the time to de- 

tect (give that detection occurs) is uniform from time 0 to time 20 units. 

The time to classify, given that classification occurs, is also uniform 

from 0 to 20 time units.  A maximum time of 20 units in any nontrapping 

state is allowed and thus implies that failure occurs if the next state 

is not reached in 20 time units. 

Conditional probabilities implied by the diagram are readily found 

to be those in Table 9.1. This set of transition probabilities and the 

possible transitions are also shown in Figure 9.2. 
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FIGURE  9.1       PROBABILITY STATE  TIME  DIAGRAM   FOR  AN  ARTIFICIAL STOCHASTIC 
(NON-MARKOV)  PROCESS WITH  STATES O,   D,  C,  A,  AND  F 
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Table 9.1 

TRANSITION PROBABILITIES DERIVED FROM FIGURE 9.1 

P(D/0) = 9/10 (Detection occurs for 0 < u < 0.9) 

P(C/D) = 8/9 (Classification occurs for 0 < u 5 0.8) 

P(A/C) = 6/8 (Attack occurs for 0. <,  u <,  0.6) 

P(K/C) = 5/6 (Kill occurs for 0 < u < 0.5) 

P(F/0) = 1/10 (0.9 < u £ 1.0) 

P(F/D) = 1/9 (0.8 <,  u < 0.9 out of 0 <.  u < 0.9) 

P(F/C) = 2/8 (0.6 £ u < 0.8 out of 0 <: u < 0.8) 

P(F/A) = 1/6 (0.5 5 u ^ 0.6 out of 0 <.  u £ 0.6) 

FIGURE 9.2      TRANSITION   DIAGRAM  FOR  THE  IMBEDDED PROCESS WITH CONDITIONAL 
PROBABILITIES FROM  FIGURE 9.1 

Any exercise starting in opportunity and ending in kill or fail can 

be thought of as a path through this Markov diagram; transitions from 

state to state can be tabulated for estimating conditional probabilities, 

and these estimates can be used as in the WSE model to estimate the proba- 

bility of kill given opportunity.  The probability of kill given oppor- 

tunity is the product of the conditional probabilities along the single 
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path from opportunity to kill.  When the true transition probabilities 

are used, the estimator for p  gives 

9        8       6       5 
P(K/0)   =YÖX9X8X6=  5/1°   =  °'5 ' (9,L) 

Examination of the PST diagram in Figure 9.1 shows that Kill occurs when 

0 < u ^ 0.5 and Failure occurs otherwise; hence, the conditional proba- 

bility estimator in Eq. (9.1) is exact (when infinite data are available) 

since the distribution of u is assumed uniform on (0,1).  It appears, 

therefore, that a Markov model of this process has been successfully 

determined since all conditional probabilities and the measure of effec- 

tiveness P(K/0) are correct. 

B.   The Dynamics of the Process 

Thus far the behavior of the process in time has not been considered. 

From the PST diagram of Figure 9.1, the probabilities of occupying each 

state as a function of time can be determined by drawing a vertical line 

at time t and measuring the lengths of the line segments representing 

each state along this vertical line.  The resultant probabilities of 

state as a function of time are shown in Figure 9.3 for all six states 

for all times from 0 to 60. 

Several attempts have been made to fit a dynamic Markov model to 

this non-Markovian process by a variety of methods.  The methods are to 

estimate by: 

(1) Matching average time-in-state, unconditionally. 

(2) Matching average time-in-state, conditioned on the next 

state. 

(3) Introducing additional states to represent delays. 

(4) Using actual P(state) as a function of t and least squares. 
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(5) Fitting a semi-Markov process, after introducing addi- 

tional states as needed. 

(6) Defining a new process whose states incorporate time in 

the state definition. 

These methods will be discussed in turn.  In all cases, infinite data are 

assumed to avoid dealing concurrently with sampling problems and struc- 

tural problems. 

C.   Six Markov Approximations to the Actual Process 

1.   Matching Average Time Spent in a State 

In Section VI, the average time spent in a state i with self- 

transition probability p  was shown to be the quantity 1/(1 - p  ), 
ii ii 

which when inverted results in p  = 1 - 1/T —where T  is the average 
ii i        i 

time spent in the state before exit.  Transition probabilities for the 

imbedded process are then each multiplied by (1 - p  ) to normalize them. 
ii 

Average times-in-state (T.) are readily calculated from the PST diagram, 

and the p  and normalization calculations give the transition matrix 
ii 

shown in Table 9.2 for the approximating Markov chain. With this set of 

parameters, then, the approximating Markov chain model has the following 

properties: 

• The conditional probabilities are exactly the same as 

the actual process of Figure 9.1, and the probabilities 

of kill and fail are the same. 

• The average time in each state (except fail and kill) 

is the same as the average time for the actual process. 

To determine P(state) as a function of time, P can be calcu- 

lated by using values from Table 9.2; the results are plotted on Figure 

9.3.  A comparison of the true values with the Markov chain values shows 

that merely matching average times-in-state is insufficient for a good 

dynamic fit to the actual non-Markovian process. 
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General features of the dynamic fit, which tended to persist 

for other Markov attempts also, are: 

• The actual random process may have sharp cutoffs at 

points where the probabilities reach their final 

values, but the Markov approximations reach their 

final values asymptotically. 

• The shapes of the approximating curves are reasonable 

but lack the sharp corners of the actual process. 

• The approximating P(state) as a function of t curves 

usually leads the actual curves for small t, cross 

over the actual curves, then lag the actual curves 

thereafter. 

• Appreciable probability remained in the transient 

states at t = 60 (the point at which all probability 

has been absorbed in the actual process). 

2.   Matching Average Times in a State, Conditioned on the Next State 

The method given above has the disadvantage that the average 

waiting times in a state are computed by averaging over all states to 

which transitions are made.  Thus, the average time in the opportunity 

state is 

0.9 K (average waiting time in opportunity|detect occurs) 

+ 0.1 X (average waiting time in opportunity|fail occurs) 

Since fail is an absorption state, it is obvious that if only the average 

waiting time in opportunity—given that detect occurs—is used as the 

waiting time, the new p.. should better approximate the dynamics. 

Carrying out the new average time calculations and repeating 

the process used for the first method resulted in a fit that was only 
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slightly better than that of Method (1), however.  [The improvement was 

so slight that the dynamic response for Method (2) was not plotted.] 

3. Introducing Delay States 

In Section VI, it was suggested that the waiting time density 

of an approximating Markov chain could better approximate the true density 

if delays were introduced to permit fitting both the mean waiting time 

and its variance instead of just the mean.  The methods of that section 

were used to determine numbers of delay states D ; the new transition 
i 

matrix was raised to successive powers to determine P(state) as a function 

of time once again.  Figure 9.4 shows the results and compares them with 

the values from the actual process.  The opportunity curve is somewhat 

improved [over the curve of Method (1)1, detection and classification are 

considerably improved but still lead the actual curves, attack is im- 

proved but leads the actual curve and the peak probability is far too 

small, and kill is somewhat improved.  The final state (fail) has a some- 

what poorer fit than that obtained by Method (1). 

4. Using Actual P(State) as a Function of Time and Least Squares 

A fourth method of estimating the p  was a modified version 
ij 

of the least squares model in Section VI-C-5.  The modification consisted 

of using P(state) as a function of time data for t = 0, 5, 10, ..., 60 

so that the transition probabilities being estimated were the five-step 

(5) 
probabilities p   .  The difference equations used were: 

ij 

yx(n) = y^n - l)pn (9.2) 

y2(n) = yi(n - Dp^ + y^n - 1)^ (9.3) 
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y3(n)   =y2(n-   1^ + 7g(n -   l)p33 (9.4) 

y4(n)   =  y3(n -   Dp^ + y^n -   Dp^ (9.5) 

4 

y   (n)   =   >     y.(n -   l)p.=  + y   (n -   1) (9.6> 
5 / ^    l i5 5 

i=l 

y   (n)   =  y   (n -   Dp       4- y   (n -   1) (9.7) 
6 4 46 6 

where 

y (n) = P(state = i at time 5n) from the actual process, 
i 

To constrain the sum of probability out of each node to be unity, Eq. 

(9.6) was modified by replacing the p   by 
i5 

P.c = 1 - (p.. + P. .,,)    for i = 1, 2,   3, 4    .     (9.8) 
i5      \ ix   1,1+1/ 

This reduces the number of variables to eight and ensures that 

6 

J-l 

for all states i. 

The estimates of transition probabilities are shown in Table 

9.3.  Parentheses show values obtained by normalizing after setting the 

(3,5) element to zero (this element was negative in the least squares 

solution).  This five-step transition matrix was raised to successive 

powers of n to determine the predicted P(state) as a function of time in 

the usual manner; the results are shown in Figure 9.5. 

141 



1.0 l—i—i—r 

~~—■   Actual  Process 

 Markov  Chain    — 

w     e. <    -6 

< 
l- 

0 

1.0 

.8   — 

v     .6    - 

.4   — 

.2    — 

I   I   I   I   I 

1   
   

 1 
   

   
1 

— 

* s - 

i —*-■—" ■   * 1 

1.0 1 I 1    1 1   1 

.8 

(b) 

— 

.6 

.4 

if 
\l — 

.2 J \ \ 

*«» 
0 '   1 1 l\l 1  ""-I 

0 

1.0 

< 

.8   — 

.6   — 

.4   — 

.2   — 

I   
I   I   I 

i   i 
if» - 

- 

/flii i   i 
0      10    20     30    40     50    60   70 

TIME — arbitrary units 

10     20     30    40     50     60    70 

TIME — arbitrary units 

FIGURE 9.5      COMPARISON  OF  P(STATE)  AS A  FUNCTION  OF  TIME  CURVES 
FOR  THE  ACTUAL  PROCESS  AND  LEAST SQUARES  APPROXIMATION 

142 



Table 9.3 

(5) 
ESTIMATES OF p   USING P(STATE) AS A FUNCTION OF TIME 

ij 

1/j 1 2 3 4 5 6 

1 0.683 0.317 0 0 0 0 

2 0 0.6039 0.2762 0 0.1119 0 

3 0 0 (0.620) (0.380) (0) 0 

4 0 0 0 0.6186 0.1421 0 

5 0 0 0 0 1 0 

6 0 0 0 0 0 1 

Because the input data leading to these estimates contained no 

transition information, it is of interest to see what estimate of the 

probability of kill p  is implied by these p  .  In contrast with the 
K ij 

true value p  =0.5, the estimate is readily found to be p  = 0.432. 
K K 

Therefore, it appears that estimators optimal for estimating the absorp- 

tion probability p may not be optimal for predicting P(state) as a func- 
K 

tion of time when Markov methods are applied to non-Markov situations. 

5.   Semi-Markov Approximation 

The first four methods used successively better estimates of 

the densities of waiting time in a state without incorporating some of 

the many dependent aspects of the true model into the estimators.  Methods 

(5) and (6) used auxiliary states defined so as to remove some of the de- 

pendencies.  An additional refinement in Method (5) was that the waiting 

times were not required to be geometrically distributed.  That is, the 

fifth approximation was by a semi-Markov process, not by a Markov chain. 

The fifth attempt to "Markovize" the actual process used a 

semi-Markov model with 28 states—the original 6 and 22 others.  Density 
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functions of the transitions were allowed to vary according to the state 

being entered (semi-Markov property).  The Z transform method was used 

for the calculations and was carried out by hand.  Because of the labor 

entailed, only a few comparisons were made.  These are given in Table 9.4. 

Table 9.4 

RESULTS FROM SEMI-MARKOV APPROXIMATION—28 STATES 

Time State P(state)[true] P(state)[semi-Markovl Error 

5 Detect 0.2 0.273 0.07 

10 Detect 0.38 0.4 0.02 

20 Detect 0.53 0.537 0.01 

30 Detect 0.145 0.145 0 

35 Detect 0.045 0.045 0 

40 Detect 0 0 0 

16 Classify 0.19 0.222 0.03 

20 Classify 0.29 0.3164 0.04 

40 Classify 0.23 0.2182 0.01 

30 Attack 0.255 0.224 0.03 

40 Attack 0.42 0.36 0.06 

50 Attack 0.26 0.33 0.07 

The dynamic behavior of the semi-Markov model approximates the 

actual behavior considerably better than any of the earlier Markov chain 

approximations used in Methods (1) through (4).  It is encouraging to see 

that a semi-Markov model can fit such a complex dynamic probabilistic 

process as that defined by the PST diagram.  However, the semi-Markov 

model used in Method (5) used knowledge of the actual process itself; 

this knowledge will not be available in applications to real problems. 

(All other approximating methods in this report use only observed data 

so that this fitting attempt was an exception to the general rule:  use 

the artificial problems to find promising methods that can be transferred 

to real problems.) 
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6.   Incorporating Time into the State Definition 

The estimating methods given so far can all be viewed as syste- 

matic ways to add auxiliary states and transitions to improve the fit of 

the dynamic behavior represented by P(state) as a function of time.  In 

the sixth estimating method tried on this problem, time itself was used 

to define auxiliary states.  The method can be shown to be equivalent to 

a model with time-varying transition probabilities. 

In the original process, there are six states and time varied 

from 0 to 60.  In the new process, the states are the ordered pair (S,T), 

where  S' denotes the state in the original process and T is an integer 

value of time.  For example, the new state (C, 12) or C12 represents the 

state "the original process is the classify state at time 12,"  The de- 

rived process has 6 X 60 = 360 states because times from 1 to 60 are used. 

Any sample path from the original process, together with the 

transition times, now generates a path in the new process.  For example, 

the value of u = 0.15 in the original process results in 

Detection at time 17 

Classification at time 22 

Attack at time 31 

Kill at time 52. 

In the derived process, the path is 01,  02, ..., 016, D17, D18, ..., 

D21, C22, C23, ..., C30, A31, A32, ..., A51, K52, K53, ..., K60. 

A computer program was written to select a set of sample paths 

from the PST diagram and to perform the processing necessary to estimate 

The 0 = Opportunity. 
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P(state) as a function of time.  When infinite data are assumed to be 

available, this model fits the original process essentially perfectly 

in the P(state) as a function of time sense.   This was first hypothe- 

sized and then verified numerically.  (When u was varied systematically 

from zero to 1 in steps of 0.001—i.e., one thousand paths—the probability 

of state as a function of time curves were indistinguishable from those 

in Figure 9.3.  A random sample of 1000 paths also produced an excellent 

fit, as expected.  A random sample of 100 paths produced estimates typi- 

cally in error by 0.01 to 0.02, with occasional values in error by as 

much as 0.05. 

Although the derived process has many more states than the 

original process (360 versus 6), in many respects the length of the cal- 

culations themselves do not increase in proportion.  For the six-state 

process, the products of powers of the 6X6 transition matrix are multi- 

plied to obtain probabilities of state as a function of time.  In the 

derived process, matrix multiplication was unnecessary because the proba- 

bilities at a state in this process are themselves the probabilities of 

being in a state of the original process at the corresponding time; hence, 

the probabilities in this process can be calculated by simple recursion 

methods because of the absence of loops in the transition diagram. 

D.   Summary 

A six-state dynamic probabilistic non-Markov process was defined by 

a PST diagram in order to have a known process for experimentation.  Six 

different methods were used to determine the parameters of a Markov or 

semi-Markov model to approximate the actual process.  Of special interest 

was the dynamic behavior of the approximating processes as represented by 

Quantization is required which introduces some small errors. 
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the curves showing P(state) as a function of time for each of the six 

states and all times from 0 to 60. 

The findings are the following: 

• P(state) as a function of time fit the actual process rather 

poorly for Markov chain Methods (1) through (4) and fit quite 

well for semi-Markov and nonstationary Methods (5) and (6). 

• The best fits were obtained by using auxiliary states. 

(Markov chain methods used auxiliary states to better repre- 
sent waiting times in a state, and the semi-Markov model 

and nonstationary model used auxiliary states to reduce 

dependency.) 

• P(state) as a function of time curves from the approximating 

Markov chains were quite smooth and approached their final 

values asymptotically; the sharp corners and abrupt cutoffs 

of the actual process were not well-approximated. 

• The least squares method, which used the actual P(state) as 

a function of time as inputs, gave parameters that implied 

a value of probability of kill (pj^) and differed appreciably 

from the true value of pK.  This suggests that estimators 

which are best for estimating p„ may not be best for estimating 

P(state) as a function of time. 
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X MARKOV MODELS THAT INCLUDE FALSE CONTACTS 

A.   Introduction 

Traditional conditional probability models of ASW system effective- 

ness do not explicitly include false contact considerations such as the 

detection and prosecution of false contacts.  One of the objectives of 

the current study is to develop models that include false contacts in the 

dynamic ASW environment. 

Three operational false contact models that generalize the traditional 

conditional probability models are defined in this section.  Two different 

approaches to defining a state space are used; in both cases, a single de- 

tection opportunity of an ASW unit on an enemy submarine is assumed. 

Conventional ASW screening by destroyers and use of destroyers in an 

antisubmarine barrier are examples of tactical situations to which the 

operational models apply. 

The first model is a Markov chain model that generalizes the tradi- 

tional conditional model in the simplest possible way.  The second model 

is a modification of the first, but it uses a continuous time, competing 

process formulation for transitions into and out of the prosecute false 

contact state.  Tables are given to show how false contacts degrade ASW 

effectiveness for the second model.  The third model uses a state space 

whose states are ordered pairs of the original states.  The first element 

of the pair describes the ASW units situation with respect to false con- 

tacts, and the second element describes the situation with respect to an 

actual submarine. 

The generalization to multiple-opportunity situations appears to be 

straightforward. 
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B.   A Markov Chain Model for an ASW Unit in the Presence of 

False Contacts 

The diagram in Figure 10-1 shows the states for a Markov model of a 

single ASW unit when false contacts may be present.  It is the simplest, 

meaningful generalization of the traditional conditional probability 

model with the five states designated.  It should be noted that the dia- 

gram has a single loop.  Two states have been added to the traditional 

model; they are succinctly designated as prosecute false contact and 

opportunity with false contact. 

Fuller definitions of these additional states are: 

• Detect and Prosecute False Contact:  Detect a contact that 

will later be found to be false and take appropriate action 

to prosecute the contact. 

• Opportunity with False Contact:  An actual submarine arrives 

and presents a Detection Opportunity while a False Contact 

is being prosecuted. 

Therefore the prosecute false contact state is terminated in two ways: 

• When the contact has been classified as a false contact and 

the ASW unit has returned to the screen. 

• When an actual submarine arrives that either presents a de- 

tection opportunity or would have presented a detection 

opportunity to the unit if it were not prosecuting a false 

contact. 

The model applies to situations in which there is a single opportunity 

to detect a submarine.  For example, a destroyer in the traditional 

screening role with the mission of detecting, classifying, attacking, and 

killing a penetrating enemy submarine fits this model.  A second example 

is a barrier operation involving a surface ship patrolling one portion of 

the barrier.  An ASW unit in either of these contexts may be more than a 

single ship; for example, it may be a destroyer and a LAMPS helicopter. 
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State transitions will be explained next.  It is assumed that the 

starting state is search (state 1).  While searching, false contacts may 

from time to time be detected and prosecuted, causing the state to change 

to state 3 (prosecute false contact).  The transition from state 1 to 

state 3 will depend on the definition of false contact and the ship de- 

tecting may or may not make an action appropriate to an actual submarine. 

Of the two opportunity states, state 2 (opportunity) is defined in 

the usual way on the basis of a maximum detection range for the ASW unit. 

State 4, opportunity with false contact (defined above), is the second 

opportunity state.  A transition from state 3 to state 4 occurs when a 

penetrating submarine comes within the maximum detection range while the 

ship is prosecuting a false contact.    * 

State 3 also changes to state 4 when a submarine would have presented 

a detection opportunity to the ASW unit had it not changed position to 

prosecute a false contact.  It will be necessary to be somewhat arbitrary 

in order to make this definition more precise.  If a destroyer has an 

assigned area to search, the submarine may be said to present an oppor- 

tunity with false contact when it arrives into this assigned area, for 

example.  If the submarine is not-detected while in an opportunity state, 

then the ASW unit fails to detect and hence enters the fail state.  It 

is assumed that once opportunity passes there will not be another chance. 

If, however, detection of the submarine occurs (the assumption here is 

that detection means detects and prosecutes), then the state changes to 

detect just as though the false contact had not been made.  From detection 

onward, the transitions are the same as those in the traditional model. 

Failure can occur at any time following detection, and classification and 

attack are necessary conditions for kill.  The possibility of counter- 

attack is not considered in this model. 
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For the present, it is assumed that data are available to allow the 

estimation of transition probabilities from a set of tactical ASW exer- 

cises or incidents.  Let n  be the observed number of transitions from 
ij 

state i to state j.  Then the transition probabilities not involved with 

the loop are estimated in the traditional way: 

n 
, i »   number of classifications       56 

F>   = P(C|D) = 
56      '       number of detections 7n   +~ü \ 

\   56    58/ 

n 
,   ■ „      number of attacks 67 

ft   = P(A C) =  
67      '     number of classifications   /n  + n \ 

\   67    68/ 

n 
. , „    number of kills        79 

p   = P(K A) =   
79      '    number of attacks 

\   79    78/ 

Each of these estimators is an instance of the use of the general formula 

9 

p . = n ./ /     n  = n ./n. 
ij    ij/X-^  ik    ij  l 

k=l 

When care is taken to count transitions properly, this formula holds for 

all transitions including those involved with the loop.  The denominator 

n represents the total number of transitions out of a state.  For the 
i 

transient states (i.e., all states except kill and fail), n  also equals 
' i 

the number of transitions into the state.  Thus, the number of transitions 

into or out of search is 

(number of exercises beginning in search) + (number of times false 

contacts are prosecuted to completion) = n  + n 
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where n   is the number of exercises starting in Search.  Since a given 
01 

trial may result in 0, 1, 2, ..., false contact prosecutions, the total 

number of entries into Search may have any nonnegative value.  Similarly, 

the total number of entries into state 3 (detect and prosecute false con- 

tact) will be the denominator of the two transition probabilities corre- 

sponding to the two ways of leaving this state. 

Given the estimates of p   = P[S(n + 1) = j|S(n) = i] for all (i,j) 
ij 

branches on the state diagram, Mason's rule of Appendix D for calculating 

transmissions in linear systems can be applied to give the formula for the 

desired estimate of the probability of kill.  [Matrix inversion to obtain 

the absorption matrix A = (I - Q)  R is equivalent to this.]  When transi- 

tion data are derived from a set of complete exercises, the theorem in 

Appendix E ensures that this estimate is identical to the simpler estimate 

(number of kills/number of exercises). 

Mason's rule requires the calculation of loop transmissions and open 

path transmissions.  Since there is a single loop with transmission 

p  p  , the graph determinant is simply 

A = 1 - p p H13^31 

There are two open paths from search to kill.  The first path is 

Search -» Prosecute False Contact -> Opportunity with False Contact -» De- 

tect -» Classify -» Attack -» Kill with transmission equal to the product 

of the conditional probabilities along the path p  p  p  p  p  p  .  The 
13 34*45 56 67 79 

second path, Search -> Opportunity — Detect — Classify -> Attack — Kill, 

has transmission p  p  p  p  p  .  These two open paths have the detect, 
12 25 56 67 79 ' 

classify, attack, and kill states in common so the last three transition 

probabilities can be factored out.  The formula for p  which results from 
K 
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Mason's rule is therefore 

KA      A      A      \ /A      A      Y~"| A A A 

P13P34P45; 
+ (P12P25)J ' P56 ' P67 ' P; _ 79 

p„ = —        '."  ~~'1  .    (10.1) K 1 - p  p 
^13^31 

Because of the simplicity of the loop structure, this formula can 

either be interpreted more directly, or, alternatively, be derived from 

basic probability principles.  Examination of the transition diagram 

shows that the numerator is the probability of transmitting directly from 

the search state to the kill state, without returning to the search state. 

The loop product p p   in the denominator is the probability that a 
X. o *5 JL 

given trial starting in search will result in one or more loops (i.e., 

returns to search).  Therefore, the graph determinant A, with value 
A      A 1 - p  p  , is the probability of no return to search for a given trial. 

Conditioning on the number of loops (k) before a series of transitions 

finally leads to one of the absorbing states, 

00 

P(Kill) = y     P(Kill|path begins with k loops) 

k=0 

X P(path begins with k loops)    .       (10.1a) 

The first term in the production on the right, which is actually inde- 

pendent of k, is the numerator in Eq. (10.1).  The second term in the 

product is simply (p  p  ) .  Therefore Eq. (10.1a) becomes 

OS 

P(Kill) = [numerator of Eq. (10.1)] */ ^  (PI3P31) 
k=0 

= numerator/[l - p  p  ) (10.1b) 

which is identical to Eq. (10.1). 
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An algebraically equivalent form separates the probability estimate 

Eq. (10.1) into two components. 

PPPPPP PPPPP F13 34*45 56 67 79    12 25 56 67 79 
=  + —-     .       (10.2) 

k     X " P13 ' P31        1  ~   P13P31 

In this form the first term depends only on false contacts and the second 

is the usual estimate divided by 1 - p  p  , which may be considered to 
13 31' 

be a false contact "correction term." 

The basic expression of Eq. (10,1) can be rewritten again to show 

another possible interpretation.  When the search to kill transition is 

considered in two phases—the first from search to detect and the second 

from detect to kill—the formula for the probability of kill becomes 

p  = P(Kill) = P(Detect) X P(Kill Detect) 
k ' 

/ P     P     P P     P \ 
/     13   34*45 12   25      \       „      .      „ 

X  P^P^P^ •      (10.3) \l-pp 1-pp/ 56   67   79 
\ 13  31 13^31/ 

The effects of false contacts are isolated in the first term representing 

P(detect), except for the "correction factor" 1-pp   in the second 
' 13 31 

term. 

Several special cases of Eq. (10.1) are of interest and are discussed 

as follows: 

•  When there are no false contacts the estimate of p,„ is zero 

and the kill probability formula is then reduced to the 

traditional estimator 

P = P P P P  P     • (10.4) Fk   12 25 56 67 79 

When a false contact prosecution completely precludes de- 

tection of an actual submarine, p,,. will be zero; then the 
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formula becomes 

p  D  P  P  P 
12*25 56 67 79 

P. =  ■ ^     • (10.5) 
k     1 - p  p 

13 31 

Even though the first term is now zero, the (1 - p  p  ) B ' *13v31 
correction term remains in the denominator to modify the 

traditional estimate. 

If pg-, is zero—that is, if the ASW unit never returns to 

search following prosecution of a false contact—the de- 

nominator disappears and p. is the sum of two terms: 

K  = ^34^56^79  + &12V56P67*79 ' (1°'6) 

Alternatively, since p^, = 1 and p__p__p  is common to 

both terms, 

p     =     pp       +pp       PPP . (10.6a) 
k 13*45 12*25     56*67   79 

The first term (in parentheses) shows that there are two 

exclusive ways to detect; the remaining product is the 

probability of kill given detection. 

If an actual submarine always arrives while the ASW unity 

is in Search (and never arrives while prosecuting a false 

contact) the pg4 and p-,g are both zero.  This implies that 

P31 = 1 anc* Pl2 = 1 ~ Pl3'  Putting these into Eq. (10.1) 
results in 

P  = P P P  P (10.7) 
*k  P25*56P67*79 

and shows that no false contact considerations remain. 

[The p12 factor disappeared because it was assumed that 

the submarine always arrived during search so that the 

opportunity state (2) was always reached.] 

When false contacts are so frequent that they are effec- 

tively always present, then p^2 
may ^e considered to be 
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zero and the formula becomes 

P P P P P P 
13 34 45 56 67 79 

P, =  : s s    • (10.8) 
k       X - P13P31 

If p,o is zero also, then p-,g = 1 and Eq. (10.8) becomes 

ys    /s    A    ^    ^ 

p  p  p  p  p 
"34*45 56 67 79 

P, =  ; ~    . (10.9) 
k      1 - p 

31 

C.   A Mixed Markov Model for an ASW Unit in the Presence of False Contacts 

The Markov chain model in the previous section can be generalized 

somewhat by passing to the competing process formulation of a continuous 

time Markov model.  This model, which will have transition rates as its 

only parameters, can be reduced either to the Markov chain model involving 

only transition probabilities or to a mixed model involving both transi- 

tion rates and transition probabilities as parameters.  The mixed model 

should be suitable for assessing the impact of false contacts on ASW sys- 

tems effectiveness from data obtained from exercises in which false con- 

tacts were not considered. 

In general, the competing process formulation of a continuous time 

Markov model is as follows.  Associated with each branch of the transition 

diagram (i.e., with each transition) is an exponential distribution with 

parameter X     .  The set of \  completely characterizes the process, for 
ij ij 

transitions are determined from the \      by the following rules.  First 

selecting a set of candidate transition times IT  I, one value for each 
ij ' 

branch out of state i.  [The candidates are chosen independently of one 

th 
another, the (i,j)   time being selected at random from an exponential 

•k 
distribution with parameter \,..]  The next state, j , is selected as 

that state j with the minimum transition time, and the time of the tran- 

sition is chosen equal to that time.  Symbolically, j  = j such that T. . 
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is minimized; therefore, T   is the waiting time in i prior to the 

transition to j .  It can be shown that the resulting distribution of 

the time required to transit from i to j is exponential with parameter 

X.,   independent of the destination state j, where 

, = 7 x 
l   4-~1     i„ 

(10.10) 

The transition probabilities for the imbedded Markov chain implied by 

the above rules can be shown to be simply related to the transition rates 

by 

P . = X   ,/X when i ^ j (10.11) 

To apply the competing process concept to the formulation to a false 

contact model, consider a model with the same set of states as the Markov 

chain model above.  The rules for writing down the Laplace transform of 

the transmission from state 1 (search) to state 9 (kill) result in Eq. 

(10.12). 

19 
(s) 

W WV 
jvs)(vs)+ (VS)(VS)(VS)J 1(VS)(VS)(VS) 

^67*79 

1 - 

(Vs) (Vs) 
(10.12) 

The derivation of this formula follows from the use of Mason's rule with 

an appropriate set of branch transmissions.  The state 1-state 2 branch, 

which formerly had a transmission p  , now has the transmission 

X    /(X    + s).  In general, the i - j transition has the transmission 

X    /Ck    + s).  The Markov chain probability of kill formula is now ob- 
ij   i 

tained by setting the Laplace variable s to zero and substituting p 

for X    /X    throughout the right side of Eq. (10.12). 
iJ  i 

iJ 

159 



The objective in this section is to obtain a modified model, how- 

ever.  To this end, the variable s is set to zero and p  is substituted 
ij 

for \ /\    for the 5-6, 6-7, and 7-9 transitions only.  The result is 
ij     i 

Eq.    (10.13). 

/\2A-25   |   
X13A-34A-45\ 

\   W     '       W4   /   P56P6?P79 
t     CO)   =  —  . (10.13) 

13   31 

Since the arrival rate of an actual submarine should not depend on 

whether the ASW unit is prosecuting a false contact or is in Search, the 

quantities \  and \      may be assumed to be equal.  Replacing \      by X 

and multiplying numerator and denominator by A. results in Eq. (10.14). 

^25   \3_M 
*12\ K     +   \       \   J  P56P67P79 t»<0>- \k.      • 

To have a more convenient set of parameters to work with, it is now 

assumed that the probability of detection is degraded by a constant factor 

f when a false contact is being prosecuted.  Specifically, it is assumed 

that 

P45=P25Xf (10.15) 

where f is a fixed number in the interval (0,1).  Substitution of Eq. 

(10.15) together with Eq. (10.11) into Eq. (10.14) gives Eq. (10.16). 

^h'h^sh 12 \      13  3/^25 
t  (0) =  J -~  p p  p      .       (10.16) 
19        \    -  X    X    /K 56 67 79 

1   13 31 3 
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From the factorization in Eq. (10.16), False Contacts can be seen to 

result in a degradation in the transition probability p  in the tradi- 
15 

tional conditional probability model.  Denoting this degraded value by 

p  , we have 
15' 

015 =  T~T     ' (10.17) 

The value of the degradation factor itself is the ratio 

d =    . (10.18) 

Another parameter needs to be introduced for the sake of interpret- 

ability.  If it assumed that the average time spent prosecuting a false 

contact in the absence of a submarine arrival (l/\  ) is a constant k 

times the average time between arrivals of false contacts in the absence 

of a submarine arrival (l/\ ), then 

kr~ = r~   >    ork = \3A3i    • (10-19) 

13    31 

To illustrate the numerical value of the degradation caused by false 

contacts, let it first be assumed that the value of f is zero.  This 

means that no submarine detection is possible while the ASW unit is prose- 

cuting a false contact.  Without loss of generality it may be assumed 

that the arrival rate of actual submarines in the absence of false con- 

tacts (\  ) is unity.  Equation (10.18) then becomes 
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[ 1 + \ ) +  ;  
I     18/   1 + k/\13 

(10.20) 

when \ 
12 34 

= 1, f = p  /p   =0, and k = A. /\  . 
'     F45 *25    ' 13  31 

Under these conditions, the degradation factor d is given in Table 

10.1 for the parameters indicated when A.  is also zero. 
18 

Table 10.1 

VALUES OF DEGRADATION FACTOR CAUSED BY FALSE CONTACTS 

Parameters Degradation Factor 
k ^•13 d 

0.2 CXI 0.833 
0.2 10 0.836 
0.2 5 0.839 

0.2 1 0.857 

0.4 OD 0.714 
0.4 10 0.722 
0.4 5 0.729 
0.4 1 0.778 

0.6 CO 0.625 
0.6 10 0.639 
0.6 5 0.651 
0.6 1 0.727 

0.8 CO 0.556 
0.8 10 0.574 
0.8 5 0.592 

0.8 1 0.692 

(\2   =  ^34 
=  1,   f   = 0, 

\s = 0) 
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If we return to the general case where f > 0 (arriving submarines 

may be detected when a false contact is being prosecuted), the formula 

may be readily derived 

4 (1/k) + f\7^y. 
(\2  +  \s)+J 

\2 
(10.21) 

1/k) 
(X12A13) 

Once again A.  may be chosen equal to unity to normalize the parameters, 
la 

resulting in the final expression 

1 
1 + f 

18 ' (1/k) -+- /l/\  \ 

(1/k) + 

d=  \ —l     . (10.22) 

1 + \_„ + 

Some special cases of Eq. (10.22) may be noted as a check.  In all check 

cases let \    —the failure rate when in search—be zero.  When f = 1, 
18 

the value of d becomes unity as it should since false contacts do not in- 

fluence the process.  Alternatively, when the value of k is zero, the 

prosecution of false contacts is instantaneous and results in a degrada- 

tion factor of unity.  A third case, analogous to a queueing system in 

which the arrival rate equals the departure rate, results when the value 

of k is unity.  For the third case, algebraic manipulation of Eq. (10.22) 

results in 

ä=1~   2-1/X ' (1°-23) 
13 

Therefore, as the arrival rate of false contacts \  increases, the 

degradation factor approaches the value d = (1 + f)/2. 
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In Eq. (10.22), the parameters are seen to be f, \     , and the quan- 

tity (1/k) + (l/\  ).  Table 10.2 was constructed for two values of f and 

values of the other parameters as indicated. 

Table 10.2 

DEGRADATION FACTOR d CAUSED BY THE PRESENCE OF FALSE CONTACTS 

Degradation 

Parameters Fact or d 

1 + X 
18 

1    1 

K'          k 
13 

f = 0.5 f = 1.0 

1.001 1 0.7496 0.9995 

3 0.8743 0.99925 

6 0.9278 0.9991 

12 0.9607 0.99908 

24 0.9791 0.99904 

1.01 1 0.7463 0.99502 

3 0.8685 0.99256 

6 0.9207 0.9915 

12 0.9527 0.99085 

24 0.9707 0.99049 

1.5 1 0.6 0.8000 

3 0.6364 0.7273 

6 0.65 0.7000 

12 0.6579 0.6842 

24 0.6622 0.6494 

D. A False Contact Model Formed from a Product 

The third false contact model uses a different method, which may be 

called the product method, for defining a set of states.  Again it is 

assumed that at most one detection opportunity is presented on an actual 

submarine.  The first four of the original states—Opportunity, Detect, 

Classify, and Attack—may be considered to describe the ASW unit's 
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Situation with respect to either an actual submarine or a false contact. 

If subscripts s and f are used to denote submarine and false contact 

respectively, then the cartesian product of these sets may be defined by 

choosing one state from each set and adding the subscript f to the first 

component and subscript s to the second component.  For convenience of 

notation, the original states may be denoted by their first letters. 

For example, the product state (0 ,0 ) means there is a detection oppor- 

tunity on a false contact and also a detection opportunity on an actual 

submarine. 

Another state needs to be added to complete the original actual sub- 

marine set.  This state, designated N , represents no opportunity for de- 

tection of an actual submarine.  If an ASW unit can handle one actual 

submarine contact and one false contact simultaneously, then all combina- 

tions in the product set of states are possible although some may rarely 

be observed in actual ASW operations.  It is simpler, however, to con- 

tinue considering all combinations of states rather than to try eliminating 

those that may be rarely observed.  Therefore, the set of states is formed 

by choosing the first component from the set [0 , D , C , A , K } and the 

second component from the set fN , O , D , C , A }, and adding two more 
s  s'  s  s   s 

states fail (not to kill the actual submarine) and kill (the actual sub- 

marine).  There are 27 states in all, and the starting state may be taken 

to be (0 ,N ) when the submarine is initially beyond the maximum detection 
f  s 

range of the ASW unit. 

It should be noted that not only the detection of false contacts but 

also the misclassification of false contacts and attacks on false con- 

tacts are possible in this model.  A complete sequence of errors of the 

latter kind are represented by the sequence of states 

(VNs)> (VNs)> (Cf'Ns)> (VNs)> (VNs) 
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The last state in this sequence represents the kill of the false contact, 

which may have been evaluated as kill of an actual submarine during the 

operation.  The other kind of error, calling an actual submarine a false 

contact, is also possible.  These errors are represented in the model by 

transitions to the fail state from any state with second component D 
s 

(detect actual submarine). 

Examples of this application to some of the other states will now 

be discussed.  If the exercise is begun with a destroyer in a barrier 

search before the actual penetration attempt by a submarine, then the 

starting state can be taken as (0 ,N ) since there are always opportuni- 

ties to detect false contacts.  The state (0 ,0 ) would then be entered 
f  s 

when the submarine comes within detection range of the destroyer's sen- 

sor(s) because Opportunities are then presented for detecting either the 

submarine or a false contact.  Detecting a false contact first would 

cause a transition to (D ,0 ); and if the submarine moves out of detection 
f  s 

range before the destroyer classifies the false contact, the state becomes 

(D N ).  If another detection opportunity never materializes on the sub, 

failure will result.  (The exact point at which the state should become F 

is somewhat arbitrary.) 

In general, when an actual submarine is being prosecuted, the 

Opportunity -* Detect -> Classify — Attack -> Kill chain can be followed 

with the first coordinate always being 0  as the submarine is progressively 

detected, classified, attacked, and killed.  If, for example, a false con- 

tact is detected while an attack is under way (weapon in the water) and 

this causes the destroyer to direct its attention to the false contact 

(which may be a decoy), then the state becomes (D ,A ).  The sub-f 
' f  s 

sequence for the false contact may follow, but it will be interrupted 

if kill of the submarine actually occurs.  (The state then becomes K to 

end the exercise.)  If the torpedo expires without killing, then the 
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second component of state becomes N  if the submarine has passed out of 
s 

detection range or becomes 0  if it remains within range. 
s 

Some examples may be helpful at this point.  Consider three hypo- 

thetical, reconstructed exercises that evolved as follows. 

• The destroyer detects a false contact, classifies it as non- 

sub, and returns to search.  The submarine comes within de- 

tection range but is undetected; thus, the mission results 

in a failure.  The state sequence is:  (0 ,N ), (D ,N ), 
f  s     f  s 

(0f,Ns), (0f,0s), F. 

• The destroyer detects a false contact after searching for 

some time; while the false contact is being classified, the 

actual submarine comes within range.  The false contact is 

correctly classified as false and the destroyer returns to 

search while the submarine is still within range.  The sub- 

marine passes out of range without being detected.  The 

state sequence is:  (0 ,N ), (D ,N ), (D ,0 ), (C ,0 ), 
,n    n   x f' s '        l'   s '        f'   s   '        f'   s ' 
(0.0 ), F. 

f  s ' 
• The destroyer detects a false contact, correctly classifies 

it, and returns to search.  It then detects another false 

contact, classifies it as a submarine, and performs an 

attack on the false contact.  The destroyer then returns 

to search, the actual submarine comes within range and is 

detected.  The submarine is classified as a submarine and 

attack maneuvering begins.  The submarine evades success- 

fully before weapon launch, and no further detection oppor- 

tunity is available against it.  The state sequence is: 

(0f,Ns), (Df,Ns), (Cf,Ns), (0f,Ns), (Df,Ns), (Cf,Ng), 

(Af,Ns), (0f,Ns), (0f,0s), (0f,Ds), (0f,Cs), F. 

Markov models earlier in this report were sufficiently small to per- 

mit the calculation of absorption probabilities by inspecting the transi- 

tion diagram and applying Mason's rule.  There are far too many states in 

this model for this approach to succeed.  Instead, the algebraic formula 

for the absorption matrix A derived in Section V must be used: 

(I - Q)-1R (10.24) 
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where the states are systematically numbered such that the transition 

probability matrix P can be partitioned in the form 

(10.25) 

In this model, Q is dimensioned 25 by 25, R is 25 by 2,   and the identity 

matrix is 2 by 2.  Calculations for the other measures of effectiveness 

may also be carried out in matrix terms as shown in Section V. 

It is assumed in Eq. (10.24) that transition probability estimates 

are available from data.  If the n  data are available, the formula 
ij 

p  = n /n may be used to obtain the elements of Q and R.  Other data 
ij    ij  i 

such as average time-in-state data may also be used to estimate the p 
ij 

as discussed in Section VI. 
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XI  NUMERICAL EXPERIMENTATION:  EXAMPLE TWO (FALSE CONTACTS) 

Introduction 

This section is concerned with numerical experimentation on the 

Markov chain false contact model defined in Section X.  A PST diagram 

is used to define a non-Markovian dynamic probabilistic process with the 

same nine states as used for the Markov chain model.  Data of various 

kinds are generated from the PST diagram and are used to estimate parame- 

ters of the Markov model.  These parameters are then used to calculate 

the estimates [P(state) as a function of time] from the Markov model, and 

comparison of these curves with those from the actual (PST-defined) 

process reveals the adequacy of the Markov and semi-Markov approximations. 

Because the actual process is so strongly non-Markovian, the state 

space had to be extended in an attempt to "decorrelate" some of the de- 

pendencies in the structure.  Auxiliary states were systematically added 

by three different methods.  The first method added states to provide 

"memory" of the previous state.  The second method removed the loop by 

adding a new state each time a state was reentered.  The third method 

added states to provide memory of all previous states. 

A summary of the rather lengthy experimentation on this process will 

now be given. It was shown in Section VII that the Markov chain calcula- 

tion for the absorption probability (p ) is exact when the true transi- 
K 

tion probabilities are known for the imbedded process even when the true 

process is non-Markovian.  Knowing these true probabilities is equivalent, 

in terms of sample size, to having an infinite number of samples of the 

process.  In the first set of experiments in Section XI-B, finite samples 

were first chosen from the true process, and all transition probabilities 
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were estimated from the finite sample by using the estimator 

ij    iJ jLmJ     ik 

finally, the p  formula was used to estimate the true probability of kill. 

The estimator was verified to be identical in all cases to the simple 

direct estimator (number of kills)/(number of samples).  Next, some simple 

statistical tests were made on the transition probabilities and the esti- 

mator p  and all results agreed with predictions from binomial theory. 
k 

The next set of experiments (Section XI-C) concerns methods for 

choosing the parameters of a Markov or semi-Markov model by using the 

given set of states in order to fit the dynamic behavior [P(state) as a 

function of time] to the observed data from the process defined by the 

PST diagram.  Because the theorem on absorption probabilities already 

has proved that no improvement is possible in estimating the probability 

of absorption in state 9 (kill) for a set of complete exercises, the de- 

conditioning can help only when the P(state) as a function of time fit is 

of interest or when not all data are from a set of complete exercises. 

In the latter case, better estimates of probability of kill as well as 

dynamic behavior should be possible because of the deconditioning.  The 

following methods were used. 

• Markov chain with original states, fitting mean waiting time 

T  in each state, 
i 

• Semi-Markov model, using geometrically distributed T 
ij 

• Semi-Markov model, using uniformly distributed T 
ij 

• Semi-Markov model, with transition time density h. .(•) ob- 

tained by averaging across the true process. 

• Markov chain, with transition probabilities selected so that 

P(state) as a function of time fits the data in a least 

squares sense. 
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For comparison purposes, samples of size 100 were also drawn from the 

true population and the P(state) at time t estimated by the observed 

proportion of times the process was in that state at time t. 

The next experiments for fitting P(state) as a function of t used 

altered sets of states.  Additional states were introduced systematically 

in three ways.  In the first method (Section XI-D-1) states are redefined 

to correspond to branches of the original process, which is equivalent 

to a model with a one-state memory.  The second method (Section XI-D-2) 

removes the loop in the model by considering a return to the search state 

as a new state on each return.  The third method (Section XI-D-3) is 

again semi-Markov and provides complete memory of the earlier states. 

The effect in each case was to add more states by "conditioning," thereby 

increasing the number of transition probabilities to be estimated which 

in theory should allow one to find a better fit in the P(state) as a func- 

tion of time sense.  These three methods produced a somewhat better fit 

than those using the original set of states. 

In Section XI-E, the Markov property was tested.  A comparison of 

several statistical quantities from the approximating Markov model and 

the true non-Markovian model were first given.  Estimates of the proba- 

bility of occupying any state not in a loop—including the success state— 

are found to be exact for any finite set of complete exercise data while 

estimates of most other quantities differ in the true process and the 

approximating Markov process.  The theorem of Section VII proved in 

Appendix E shows equality of the measures because the signals at the nodes 

were closely related to the probability of entering a state in the formu- 

lation for the theorem.  A chi-squared test for determining whether the 

entire set of data may be assumed to come from a Markov model concludes 

the section. 
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Figure 11.1 shows the PST diagram for the nine-state false contact 

model of Section X.  Not all possible kinds of paths are represented by 
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FIGURE 11.1  PROBABILITY STATE TIME DIAGRAM FOR FALSE CONTACT MODEL 

the PST diagram (the 1-2-5-6-7-8 path is missing, for example).  A maxi- 

mum of three trips around the single loop is implied by the diagram; they 

occur for 0.4 <■  u < 0.5.  The probability of kill is 0.19 because the kill 

state is entered in three places (0.1 < u ^ 0.2, 0.40 < u < 0.42, 
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0.70 <,  u <,  0.77) and the lengths of these intervals adds up to 0.19. 

Time varies from t = 0 to t = 200 in an unspecified set of units. 

Several quantities of interest from the actual process are given in 

the following tables and figures.  Figure 11.2 shows the transition dia- 

gram for the imbedded process and its transition probabilities that would 

be obtained from sampling the process infinitely often.  These transition 

probabilities are also shown in tabular form in Table 11.1.  Also shown 

on the branches are the numbers of transitions (based on 1000 equally 

spaced paths) that determine the true transition probabilities for the 

imbedded chain.  Table 11.2 shows the true probabilities of occupying 

all states as a function of time; the several Markov approximations to the 

actual process will be judged by determining how well the approximating 

P(state) as a function of time curves match these data.  Mean times of 

the i to j transition (T  ) data are shown in Table 11.3 for all states 
ij 

i and j; the standard deviations of the T  are shown in Table 11.4. 
ij 

B.   Monte Carlo Experiments for Estimation of Transition Probabilities 

For this set of experiments, the imbedded process is sampled; that 

is, transition counts n.. are obtained by sampling, but the information 

on transition times between states is ignored.  The natural estimator 

P  = n /Z n  is used to estimate the transition probabilities p 
ij    ij  k ij ij 

Ten sets of replications of sizes 25 to 100 were independently run and 

the p  estimates are tabulated in Tables 11.5 and 11.6.  A single column 
ij 

of each of these tables represents estimates for a set of replications 

(or case).  The estimates of the measure of effectiveness (probability of 

terminating in the kill state) resulting from Eq. (10.1) of Section X-B 

are shown on the bottom row. 

The rightmost columns compare the average p  's, where the averaging 
ij 

was over all ten cases, with the true transition probabilities.  The 
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Table 11.1 

TRANSITION PROBABILITY MATRIX (p  ) FOR IMBEDDED CHAIN 
ij 

1 2 3 4 5 6 7 8 9 

1 0 0.288 0.548 0 0 0 0 0.164 0 

2 0 0 0 0 0.529 0 0 0.471 0 

3 0.794 0 0 0.206 0 0 0 0 0 

4 0 0 0 0 0.850 0 0 0.150 0 

5 0 0 0 0 0 0.795 0 0.205 0 

6 0 0 0 0 0 0 0.686 0.314 0 

7 0 0 0 0 0 0 0 0.208 0.792 
8 0 0 0 0 0 0 0 1.000 0 

9 0 0 0 0 0 0 0 0 1.000 

estimated p  obtained by using the averaged p   is 0.1806 for 25 replica- 
k ij 

tions/case set of data and 0.194256 for the 100 replications/case set of 

data.  The true value of p  is 0.19. 
k 

The last row of each table shows the number of successes for each 

case; the ratio (number of successes)/(number of trials) may be directly 

compared with the value of p  computed for the formula for absorption 
K 

probabilities. The correspondence is exact for the 25 replications cases 

while some round-off error occurs in the fourth decimal place for the 100 

replications cases. 

A simple test on the reasonableness of the estimates of p  can be 

made on the basis of the observation that the variance of a binomial dis- 

tribution with n trials and probability of success p  is p (1 - p )/n. 
K     K      K 

In the 25-sample case, the true variance is 0.19 (1 - 0.19)/25 = 0.006156 

so that the standard deviation is 0.0783.  If a normal approximation to 

the binomial density is used, about 68 percent of the samples within one 

standard deviation of the true mean value 0.19 can be expected; that is, 

in the interval (0.1117, 0.2683).  Of the ten estimates, two are outside 

and eight are inside this interval, which is quite reasonable since 

(0.68) x 10 =s 7 were expected.  Repeating this procedure for the 100-sample 
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Table 11.2 

PROBABILITY OF BEING IN A STATE AS A FUNCTION OF TIME x 1000 

State 
t 1 2 3 4 5 6 7 8 9 

cr 950 [1 50 0 0 0 Ij Ij Ij 

10 9 0 0 0 1 0 o 0 0 0 0 0 Ij 

15 850 0 1 50 0 0 0 0 0 0 

20 80 0 0 20 0 0 0 0 0 0 0 
£5 780 0 220 0 0 o 0 0 0 
30 760 0 240 0 o 0 0 0 0 
35 740 I'J 2 6 0 0 n 0 0 0 0 
HO 720 0 280 0 o 0 0 0 Ij 

45 70 0 0 30 0 0 0 0 0 o 0 
50 680 0 320 0 n 0 0 0 Ij 

55 660 0 240 1 0 0 0 0 0 o Ij 

60 640 0 1 60 172 c o ij o 0 0 
65 645 25 1 30 137 er C" 

■J Q 5 0 0 Ij 

70 650 50 1 0 0 101 £ Li 
iL. i1' 8 0 Ij 

75 650 75 "7CT 66 70 35 29 0 0 
80 650 1 0 0 50 30 i'' i"' 43 50 0 0 
85 538 187 75 30 48 70 Ij Ij 

90 450 250 0 0 30 30 49 91 Ij Ij 

95 40 0 268 ■-■cr 30 
«_, —, 

40 48 Ij 52 
100 350 262 50 30 6 8 40 30 0 70 
1 0 5 350 256 "i rr 

C J 30 99 40 30 o 7 0 
1 10 350 250 0 0 30 1 30 40 30 0 7 0 
1 15 324 243 0 1 30 162 40 30 0 7 0 
1 20 280 *■"' Ji •"' 20 30 193 40 30 0 70 
125 243 20 6 57 30 161 1 0 3 30 0 70 
130 230 20 0 70 30 1 0 5 1 65 30 0 70 
135 230 20 0 70 30 8 0 152 68 Ij 70 
140 230 20 0 70 30 80 90 130 Ij 70 
145 335 212 53 3 0 80 90 1 0 5 Ij 95 
1 50 340 -i ■-. cr 3 0 80 90 80 0 20 
155 315 267 18 30 80 90 55 0 45 
1 60 290 310 0 30 80 9 0 3 0 0 70 
165 290 310 o 30 80 90 30 0 70 
170 290 295 (1 30 95 9 0 3 0 0 70 
175 290 240 0 30 1 50 90 30 0 70 
1 80 290 240 0 30 1 50 90 30 Ij 70 
1 85 290 240 0 30 95 145 30 II 70 
1 90 290 240 0 30 90 1 10 7 0 0 70 
195 290 240 0 30 9 0 1 10 55 o 85 
20 0 0 Ij Ij 0 0 0 0 810  1 90 
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cases gives an interval (0.1508, 0.2292) with estimates for six cases 

lying inside the interval and estimates for four cases lying outside the 

interval, which is again satisfactory. 

Similar distribution tests were also made on the distribution of the 

transition probability estimates p  .  The variance is more difficult to 
ij 

determine this time, however, since the number of samples is random.  If 

N is the random number of samples available to estimate p 
ij 

var p. .   = Efyarfp. ,|NY]   + var [i(p. . |N)1    = E Tvar/p. . |N\1 

because E(p  IN) = p  , a constant.  With the use of an average value 
ij '      ij 

assumption, the variance of p,  is approximately 

P. . = P. .(l - P. .)/ 

where N is the average value of N. 

Table 11.7 summarizes the results of the distribution calculations 

for the 100-replication cases.  The true values of p  are shown in the 
ij 

left column, the next column gives the sample standard deviations (Ö  ) 
ij 

of p  , while the last column shows the numbers of cases (out of ten) 
ij 

whose estimates fell inside the estimated one-sigma band about p  .  The 
ij 

average number lying inside was 7.2, compared with the theoretical ex- 

pected value of 6.8.  It is of interest to note that the variance of p 
k 

is 0.0392, which is smaller than the estimated sigmas—nine of the twelve 

p  from which it is computed, 
ij 

C.   Approximating the Actual Process by Markov and Semi-Markov Processes 

Several attempts were made to approximate the dynamic performance of 

the actual (PST-defined) process by selecting parameters for a Markov or 
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Table 11.7 

NUMBERS OF SAMPLES WITHIN THE ONE-SIGMA INTERVAL 

Transition Standard Deviation Number Samples Inside 

(i,j) True p 
ij ij 

(P. ,-&.., P. . + &. .) 

12 0.288 0.0340 7 

13 0.548 0.0340 7 

18 0.164 0.0340 6 

25 0.529 0.0699 7 

28 0.471 0.0699 7 

31 ' 0.794 0.041 8 

34 0.206 0.041 8 

45 0.850 0.0798 7 

48 0.150 0.0798 8 

56 0.795 0.0609 6 

58 0.205 0.0609 2 

67 0.686 0.0784 6 

68 0.314 0.0784 7 

78 0.208 0.0828 9 

79 0.792 0.0828 9 

average =7.2 

Note:  Expected number of samples inside the interval is 6.8 based 
on normal approximation. 
The variance of p, is 0.0392. k 

semi-Markov process by methods discussed in Section VI.  Unless otherwise 

indicated, an unlimited amount of data were assumed to be available from 

the actual process. 
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Since the P(state) curves characterize the dynamics of the process, 

the approximating Markov process should have similar P(state) as a func- 

tion of t curves.  The true probability of state as a function of time 

relationships, which were shown in tabular form in Table 11.2, are shown 

in graphical form in Figure 11.3.  The Markov approximations are expected 

to have difficulty achieving a fit to these rather irregular curves. 

1. Markov Chain Model with Matching Average Waiting Time 

In this first attempt to match the dynamic behavior of the 

actual (PST-defined) process, the simple method of estimating the p  for 
ij 

a Markov chain used the actual values of the transition probabilities for 

the imbedded chain together with the average waiting time T  in each state 
i 

i.  Mean times were found by a weighted average across rows in Table 11.3. 

The method, which gave a poor fit in the earlier numerical example in 

Section IX, gave an even poorer fit in this example.  The approximating 

P(state) as a function of t curves were so poor that they were not plotted. 

Evidently, better methods are needed. 

2. The First Semi-Markov Approximation:  Geometrically 

Distributed T±j 

The second attempt at fitting P(state) as a function of time 

employed a semi-Markov model with geometrically distributed transition 

times T  .  The parameter was chosen to match the known mean transition 
_ij 

times T   from Table 11.3.  As in Subsection 1 above  the time transition 
ij 

probabilities for the imbedded process were used for the transition 

behavior. 

This model was expected to be superior to that in Subsection 1 

because the mean waiting time in state i was now made dependent on the 

destination state j.  These mean times were given in Table 11.3.  The 
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comparison between the true P(state) as a function of time curves and the 

ones found from this approximate semi-Markov model is shown in Figure 11.3. 

The formula for determining P(state) at time n is given in 

Volume II of Ref. 5, p. 585: 

N      n 

a>  (n) = 6  P(T > n) + 7  p   >  h  (m)<t>  (n - m) 
ij      ij \ i   /  l—J    ik /  J    ik   kj 

k=l    m=l 

for i;j = 1,   2,   ...,   N; n = 0, 1, 2,      Here 5.. = 1 if i = j and 0; 

otherwise, T. is the (random) waiting time in state i given by 

co N n  N 

p(Ti >n)= Z E pijhxj(m) = x - EZ pijhij(m) 
m=n+l j=l m=0 j=l 

O  (n) = P(state at n = j state i entered at time zero) 
ij ' 

h  (m) = P(transition from i to j occurs at time ml transition 

is to j from i) 

3.   The Second Semi-Markov Approximation:  Uniform Distribution 

The next semi-Markov approximation assumed a uniform distribu- 

tion for each transition time T  .  The lower and upper limits of this 
ij 

distribution were selected to match the mean and variance of T   for the 
ij 

true process.  If the lower and upper limits are denoted by (a  ,b  )— 
ij  ij 

the mean transition time by T  and the variance of this time by v —the 
ij ij 

relations are 
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a   = m  - /3v 
ij    ij     ij 

b   = m  + /3v      . 
ij    iJ     ij 

where a  is replaced by zero if negative.  The fit obtained with this 
ij 

approximation is shown in Figure 11.4 and seems generally superior to 

that obtained by matching only the single parameter T 
ij 

4.   The Third Semi-Markov Approximation:  Averaged hi- 

The third semi-Markov approximation entailed the calculation of 

density functions h. .(•) by appropriate conditioning methods on the den- 

sity functions implied by the PST diagram.  As suggested by the notation, 

one density function was chosen for each allowed transition.  Because of 

the complexity of the ways some of the densities were formed, no general 

pattern or form of density could be imposed in all cases such as was done 

in the previous semi-Markov model. 

A comparison of the true and estimated P(state) as a function 

of time curves is shown in Figure 11.5.  The fit is somewhat improved 

over either of the earlier two semi-Markov approximations but is still 

far from perfect.  The reasons for the imperfections are that there are 

correlations in the true process that are not reflected in the semi-Markov 

model; as flexible as semi-Markov models are, they still have strong 

assumptions of independence of all densities h. .(•) for each transition. 

D.   Approximations Using Auxiliary States 

Three different ways to add auxiliary states for improvement in the 

quality of the P(state) as a function of time curves were formulated and 

tested numerically.  Some improvement was noted over the previous methods 

that used the original state space.  By the end of this experimentation, 
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the nature of the difficulty with the actual process was quite clear; 

time itself would have to enter the state definition. 

1.   The Fourth Semi-Markov Approximation:  One-State Memory 

A state transition diagram for the actual process that effec- 

tively "remembers" the previous state is shown in Figure 11-6.  On this 

diagram, the nodes are labeled with a pair of integers—the integer to 

the far right represents the current state, and the integer to the left 

represents the last state.  It may be verified that the states of this 

process are in one to one correspondence with the branches of the original 

process whose transition diagram is shown in Figure 11.2.  There are now 

16 states instead of nine and seven absorbing states instead of two.  The 

probability of absorption in state 8 (fail) is now the sum of being ab- 

sorbed in states 18, 28, 48, 58, 68, and 78 since there are six states 

from which the fail state can be entered. 

Transition probabilities are again shown on branches in the 

transition diagram.  Several of the transition probabilities are identical 

to those in the original process, but six differ as a result of the con- 

ditioning on the previous state.  The transition probabilities that differ 

are shown with superscripts on the figure together with their values in 

the actual process. 

A new formula for the probability of being absorbed in the Kill 

state is required; the formula is 

(1)    (2)    (1)    (1)       (2) 

(1)    (1) P13 P31P12 P25P56    P13 P34P45P56 P67P79 
p=p   pp   PP   +  ',—:  
k    12  25 56  67 79 (2) 

1 - P13 P31 

(The first term has no denominator since the open path corresponding to 

the numerator does not touch the single loop in the diagram, and this 

makes its path determinant unity.) 
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A comparison between the true probabilities of state as a func- 

tion of time and those predicted by the semi-Markov model with the averaged 

h  (•) calculated for the states in Figure 11,6 is shown in Figure 11.7. 
ij 

The fit is superior to any other obtained for states search, detect, 

classify, and kill and it is roughly the same for other states.  The 

reason for the lack of a dramatic improvement is that the deconditioning 

implied by going to a one-state memory removed some dependencies, but 

many other dependencies were unaffected. 

A rough measure of the goodness of fit of the predicted curves 

to the actual curves was adopted so that the various fitting methods could 

be compared systematically.  The results tabulated in Table 11.8 show- 

that the methods gave successively better results for all states except 

the prosecute false contact state.  Why the measures do not decrease 

monotonically for this single state is unknown. 

The last row of Table 11.8 shows the measures obtained for the 

direct estimation method.  The probability of occupying a state at a time 

t was estimated simply by the number of times the state was occupied at 

time t divided by the number of replications (100).  Values shown in the 

table are the average of two sets of 100 Monte Carlo replications.  Al- 

though the sample size is small (two sets), this simple estimator may be 

superior to those obtained by the other methods.  In the example under 

study, this is perhaps to be expected because of the irregularities in 

the true P(state) as a function of time curves, and the direct estimator 

is able to "track" these irregular curves better than the more highly 

structured Markov and semi-Markov methods. 

2.   A Loopless Version of the False Contact Model 

In the subsection above, a systematic method was used to in- 

crease the number of states in order to decondition the relationships 
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Table 11.8 

MEASURES OF DYNAMIC FIT 

Prosecute 

Processes Search False Contact Detect Classify Kill 

Semi-Markov Process 1 

Matched mean time T 
ij 

109 45 47 33 28 

Match mean and 
] 

variance by uniform j 

distribution 87 55 36 28 24  | 

Averaged h 
ij 

80 64 35 24 24  | 

One-state memory 46 56 28 16 17  ! 

Markov Chain ; 

100 replications 

(average of two 

cases) 40 — 22 — 7 

Markov 

Least squares 87 66 43 37 61 

The measure is: 

10 

constant X y    |P(state = k at time 20 n) - P(state = k at time 20 n)| 

n=l 

where P(>) is actual and P(•) is predicted. 

somewhat so that a better fit to the P(state) as a function of time re- 

lations might be attained.  In that model, the previous state was "re- 

membered" and the loop between the (original) states search and prosecute 

false contact was retained.  This section shows how the loop was removed 
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by the addition of auxiliary states because this feature of the model 

seemed to be causing problems. 

The loop is removed by treating each new entry into state 1 or 

state 3 as entry into a new state.  When the notation is used resembling 

the one in the model that remembered the previous state, the state labeled 

13 means  the state is 3, with entry from state l"; the entry 131 means 

"the state is 1, with entry from state 31."  In general, the integers 

that are read from left to right give the path traversed to arrive at the 

state represented by the last integer on the right.  Figure 11.8 shows 

the transition diagram and the true values of the transition probabilities. 

It can be noted that the three ways of entering state 2 (opportunity) from 

state 1 (detect) have different transition probabilities.  (The branches 

have probabilities 0.250, 0.185, 0.600.)  Similarly, transitions to state 

8 (fail) from state 1 (search) show differing probabilities.  (The 

branches have probabilities 0.100, 0.075, 0.445, 0.400.)  These are indi- 

cations of the non-Markovian nature of the model and also show that some 

"deconditioning" is accomplished by this change of state space.  The de- 

rived P(state) as a function of time curves are disappointingly similar 

to the last several sets and are therefore not plotted. 

3.   A Semi-Markov Model with Complete Memory 

Considerable effort was devoted to fitting P(state) as a func- 

tion of time for the false contact example before it was realized that at 

least part of the difficulties resulted from the imbedded process not 

being a Markov chain.  To overcome this difficulty, a method for defining 

auxiliary states was found, the new state space automatically provided 

a complete memory of earlier states. 

The PST diagram itself can be used to define the new state 

space.  Each line segment on the PST diagram that defines a state change 
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can be identified with a state in the new semi-Markov process.  The 

labeling of the new states is shown in Figure 11.9; there are 47 states 

in all.  The transition diagram with these states and with the transition 

probabilities computed directly from the PST diagram are shown in Figure 

11.10. 

The transition diagram has a single path for each separate way 

of reaching an absorbing state from the starting state (la).  Paths in 

the actual process are therefore in 1 to 1 correspondence with those on 

the transition diagram.  The probability of a path on the transition 

diagram is the product of the transition probabilities along the path, 

and these path probabilities agree for all paths in the actual process 

and in the semi-Markov model approximating it when infinite data are 

available to estimate the transition probabilities. 

Although the PST diagram was used here to generate the new state 

space, it should be noted that observed path data can be used for this 

purpose.  A computer program can be written to generate the states and 

to do the necessary transition counting in terms of these states if 

desired. 

A comparison may now be made between the P(state) as a function 

of transition number n for the actual and approximating imbedded Markov 

chains.  Table 11.9 shows the data.  The fit is adequate but not perfect 

because of the presence of the loop in the imbedded (actual) process. 

After the imbedded process is reasonably well-approximated, the 

dynamics can be added. A uniform distribution that represents the condi- 

tional writing time is associated with each transition (branch) on Figure 

11.10. These uniform distributions, with parameters taken directly from 

the PST diagram, were used together with the transition probabilities in 

a semi-Markov model to calculate P(state) as a function of time curves to 

compare with those from the actual process.  Figure 11.11 compares the 
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FIGURE   11.11       COMPARISON  OF  P(STATE) AS A  FUNCTION  OF  TIME  CURVES 
FOR  ACTUAL PROCESS AND 47 STATE  SEMI-MARKOV  PROCESS 
APPROXIMATION 
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results for the search, prosecute false contact, and kill states. The 

fit appears to be better than that obtained in earlier sections because 

the approximating process is "responding" for the first time to some of 

the irregularities in the actual process. The curves still were not as 

good as expected. After more experimentation, the principal difficulty 

causing all approximations to be poor finally became evident; the prob- 

lem can be seen most easily on the PST diagram. 

Consider the transition from state la to state 3a (0.40 to 1.0). 

Each of these transitions is given the same distribution of waiting time 

in state la, regardless of transitions later on.  It is apparent from the 

PST diagram that this wide distribution (transition time ranged from 0 to 

60) was distorting the time behavior for all later transitions.  For 

example, the transitions to the kill state for the range of u from 0.40 to 

0.42, which have an actual la to 3a transition time varying from zero to 

approximately two time units, have transition times over the full range 

from 0 to 60 time units in the 47-state semi-Markov approximation.  This 

phenomenon, repeated in many places, is causing the poor P(state) as a 

function of time fits for all of the approximations considered.  It is 

believed that time-in-state itself must be incorporated into the state 

definition in order to overcome this difficulty.  Although this insight 

comes from the form of the PST diagram itself, it is clear that analysis 

of the path data also could reveal the nature of this obstacle and suggest 

a way to remove it. 

E.   Testing the Markov Property 

Since the application of Markov chain models is being considered for 

a variety of ASW tactical analyses, it is of interest to know how the 

hypothesis of "Markovianness" can be tested.  When the time behavior of 

the process is ignored and only the imbedded Markov chain is observed, a 
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rather simple test is possible when data are available on entire paths 

through the Markov transition diagram.  The idea is that when a Markov 

chain with known transition probabilities is hypothesized the path proba- 

bilities can be' calculated from the formula 

P(path) = product of transition probabilities along the path 

To obtain this relationship, the Markov property (lack of memory at a 

state) is invoked. 

Consider a Markov chain with a single starting state and two absorbing- 

states.  Let the paths in a Markov chain be labeled according to some 

arbitrary numbering system—such as numbering according to their proba- 

bilities.  Since there are infinitely many distinct paths possible when- 

ever the transition diagram has loops, it will be necessary to combine 

all paths.beyond some number, say k - 1.  Then each of the infinitely 

many paths falls into one of k classes; the first (k - 1) paths each has 
th 

its own class, and the k .  class has all the remaining paths. 

The classical chi-squared goodness of fit test may now be applied. 

Let there be n independent trials, each resulting in a path through the 

system.  Let p. be the probability of observing a path in class i 

(i = 1, 2, ..., k) and f. be the observed number of sample paths falling 

in class i.  Then according to Ref. 7 the quantity 

\2 
2 

X -1 LmJl n p. 
1=1 1 

is asymptotically distributed as chi-squared with k - 1 degrees of freedom. 

In the false contact model defined by the PST diagram in Figure 11.1, 

the paths and their proabilities can be determined by straightforward but 

tedious calculations.  In the PST diagram, the actual probabilities are 
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determined by finding the total length of the intervals in which the ran- 

dom variable u determines a path of the designated type.  For example, 

the path detect-fail (designated 18) is generated in the single interval 

0 ^ u < 0.10 so that P(path 18) = 0.10. 

Table 11.10 compares the actual path probabilities with the proba- 

bilities that are derived from a Markov model.  Inspection of this table 

shows two things of interest.  The first is that the actual path probabili- 

ties (which reflect the Markov assumption) are in general very different 

from the probabilities the paths must have if the process is truly Markov 

with transition probabilities obtained from infinite sampling.  The second 

aspect of interest is that the sum of the path probabilities over the paths 

observable from the actual process is only 0.6177; missing paths have 

probability 1 - 0.6177 =  0.38.  Because there are infinitely many paths 

with positive probability, it was known in advance that the sum over any 

finite number of paths would be less than unity but it is somewhat sur- 

prising to see the sum so much less than unity in this example. 

Applying the chi-squared test to this example using data from Table 

11.10 will always result in failure of the model to pass the test whenever 

the sample size is around 100.  To see this, consider 22 classes into 

which the result of an experiment may fall:  the first 21 classes corre- 

spond to the 21 possible paths enumerated in the table and all other 

possible paths comprise the remaining class.  In terms of the chi-squared 

formula, the value of k is 22, and the last term of the sum has value 

(0-np  )/np   =np   = expected number of paths in F22/    *22     22 

the unobserved class 
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Table  11.10 

COMPARISON OF  PATH PROBABILITIES 

Actual 
Path Probability  of  Path Markov  Chain Probability 

1  8 0.10 0.1640 

12  8 0.10 0.13565 

12  5  8 0.05 0.031248 

12  5  6  8 0.05 0.038032 

12  5  6   7  9 0.10 0.06581 

131313125679 0.02 0.0068272 

131313125678 0.02 0.001793 

131313128 0.02 0.014073 

13131318 0.04 0.0011808 

13   13   18 0.12 0.0096796 

131312568 0.02 0.007200 

13   13   12  8 0.02 0.0045591 

13131258 0.01 0.00093462 

13   12  8 0.10 0.059022 

13   4  5   6   7  9 0.07 0.001420 

13   4   5   6  7   8 0.03 0.000658 

13  4  5  6  8 0.04 0.001449 

1  34  5  8 0.03 0.001190 

13  4  8 0.03 0.016933 

13   18 0.03 

£  =   1.00 

0.071358 

£  =  0.664045 
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If there are 100 samples (n = 100), the value of n p   is 

100 X (1 - 0.6177) ?s 38    , 

which corresponds to a significance level of 0.99 at k - 1 = 21 degrees 

of freedom.  The remaining terms in the sum are all nonnegative so that 

chi-squared exceeds 38, hence the hypothesis is rejected at the 0.99 

level.  Since the sums of squares will be appreciable, it can be antici- 

pated that a sample size of much less than 100 will practically guarantee 

failure of the test.  This shows the process to be so badly non-Markovian 

that the hypothesis that path data generated by the process could have 

arisen from sampling a Markov chain is always rejected for samples of 

size 100 or greater.  The chi-squared test thus serves a useful purpose 

in this example by alerting the analyst to the strong possibility that 

the model to which Markov methods are being applied is actually non- 

Markovian. 

Many other chi-squared tests also can be devised for Markovianness 

of the process.  A test entailing the observed proportions of the time 

the process is in state j at t [y (t)] and the expected proportions p (t) 
j j 

is readily defined by noting that if there are n samples of the complete 

process, then n p.(t) is the expected number of samples for which the 

state is j at time t and n y.(t) is the observed number at time t.  When 
j 2 

all times and all r states are summed, a random variable y,   .  that is 
' (r-l)T 

asymptotically chi-squared with (r - 1)T degrees of freedom results when 

the process is Markovian. 

V^[ny.(t)-npj(t)]
2  ^^n[y.(t)-p.,t,]2 

X(r-1)T 2Ll 2^/ n p.(t)        Z-fZ-f      P.(t) 
t=l j=l J t=l j=l       J 

This formulation assumes that all p (t) are nonzero.  Practical experience 
j 

with the chi-squared test suggests that the classes into which observations 
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may fall should be such that at least five observations are expected in 

each class.  These considerations must be considered in the use of this 

test, and some alteration of the summation region and an adjustment in 

the number of degrees of freedom will result. 
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XII     MARKOV MODELS  AND MONTE   CARLO   SIMULATION 

A.   Introduction 

This section shows how Markov models can be used in conjunction with 

a Monte Carlo simulation model for one of several purposes.  One reason 

to consider a Markov model in a context in which a simulation model 

exists may be simply to explain and interpret the simulation model: 

suitably choosing a state space and recording transition counts and 

transition times may make it possible to gain insight into the simulated 

problem that could not be gained by examination of the end results of the 

simulation alone.  A second reason may be to build an auxiliary model 

that is easier to use for some purposes other than the simulation itself, 

such as sensitivity analysis.  In some situations, it may be possible to 

replace the simulation model entirely by the Markov model once the simu- 

lated system is understood.  A third reason that a Markov model may be 

desirable relates to validation of the simulation.  Because the P(state) 

as a function of time relationships effectively characterizes the model 

dynamics and a valid Monte Carlo model should adequately model the 

dynamics of the tactical situation as well as the end outcomes, the simu- 

lation may be validated by a comparison of the P(state) as a function of 

time curves that it generates with the same relationships estimated from 

operational data. 

In this section some experimentation has been done using data from 

a Monte Carlo simulation model developed by NWRC for studying the effec- 

tiveness of acoustic deception devices (ADDs) in a transit area scenario. 

The simulation data were generated to: 
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Determine whether the simulation model could be adequately 

represented by a Markov model. 

Estimate the parameters of the Markov model. 

Determine properties of the Markov model that could be com- 

pared with the corresponding properties of the simulation. 

Show how some sensitivity analysis may be performed by using 

the Markov model with its estimated parameters. 

B.   The Simulation Model 

The simulation model selected is described in detail in Ref. 10. 

In outline, a single submarine and a single High Value Unit (HVU) are 

contained within an objective area represented by a circle with radius 

200 nmi.  The HVU or its supporting forces may deploy various numbers 

of acoustic deception devices so that submarine detection and classifica- 

tion of the HVU will be more difficult.  The submarine searches until it 

detects either the HVU or an ADD; detecting an ADD "captures" the sub- 

marine for a period of time called "capture time."  During the capture 

time, the submarine closes the ADD to investigate it further and then 

returns to search at the end of the capture time period.  All units have 

prescribed forms of random motion consisting of straightline tracks with 

random course changes superimposed.  Capture may occur any number of times 

before detection of the HVU occurs, and the model stops when the HVU has 

been detected.  Principal inputs to the model are speeds of the HVU, 

submarine, ADD, length of the straightline track between random course 

changes, sonar detection ranges of the HVU and the ADDs, and a parameter 

essentially describing the length of time that a submarine "remembers" a 

previously detected ADD.  Parameters selected correspond to those shown 

on Figure 5-2 of Ref. 10; they are: 

Number of ADDs = 1 

Capture time = 20 hours 
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Detection ranges (on both the HVU and ADD) -  60 nmi 

Memory time = 12 hours 

Speed of all units = 10 knots 

Length of straightline track segments = 50 nmi. 

C.   Selection of States for the Markov Model 

The states originally selected were those used in an analytical 

semi-Markov model of the same scenario as described in Ref. 6.  States 

in this three-state model were designated search, capture, and detection 

(of the HVU), with detection being an absorbing state and search the 

starting state.  However, examination of the data soon revealed that 

there should be two search states—initial search and search—because of 

the considerable difference in the parameters for initial searches and 

later searches.  The transition diagram for the imbedded Markov chain is 

shown in Figure 12.1.  (See also Appendix F.) 

START 

FIGURE 12.1     IMBEDDED MARKOV CHAIN FOR SIMULATION MODEL 

Since the simulation model did not employ Markovian assumptions, it 

was decided that a test of the reasonableness of a Markov approximation 

should be performed.  this was accomplished by the same method used to 

obtain a loopless version of the false contact model in Section XI. 

Basically, the loop in Figure 12.1 is unwound by considering successive 
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entries into capture and search as new states as shown in Figure 12.2. 

For convenience, the states are numbered as shown. 

In a Markov model, the transition times between states are statis- 

tically independent of one another.  If the simulation model is Markov, 

it should then exhibit this property also; therefore, a crude test of 

Markovianness can be formulated on the basis of this assumption. 

Let T. be the average time that state i is first entered, and 

T  = mean time spent in state i, given that the next transition is to 
ij 

state j.  Observing that each capture-to-search transition should have 

the same mean time T and each search-to-capture transition should have 
c 

the same mean time T , independence of transitions implies 
s 

T  = T 
2    12 

T  = T   + T 
3    12    c 

T  = T  + T + T 
4    12    c    s 

T=T       +  T+T+T=T       +2T+T 
5 12 c s c 12 c s 

T     = T       +  2T    +  2T 
6 12 c s 

Inspecting T for even n shows that the quantity (T + T ) is added 
n c   s 

to T   for each successive capture-search-capture cycle.  Therefore, 
n-2 

the even values of T should plot in a straight line as a function of n. 
n 

Figure 12.3 shows a plot of T as a function of n computed from 1000 
n 

replications of the simulation.  The plotted values for even-numbered 
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FIGURE  12.3      MEAN  TIMES OF  FIRST ENTRY  INTO STATE  i   (T) 

states fall very nearly on a straight line, which tends to confirm the 

assumption of independence of transition times.  A straight line has been 

drawn through the initial point to represent a mean search time of 28.9 

hours and mean capture time of 20 hours (mean search time was calculated 

from the same set of replications).  Other sets of replications also gave 
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this same near-linear pattern and agreement between the T data points 
i 

and the continuous line found by averaging search times. 

The complete output from the set of 1000 replications is shown in 

tabular form in Table 12.1.  T  and T     have already been defined, 
i     i,i+l 

var T  is the variance of T , and var T     is the variance of T 
i i i,i+l i,i+l 

The number of replications entering state i is N , and the values decrease 
i 

because of detections of the HVU.  The last column is the estimate of the 

transition probability p      obtained from the ratio N   /N . 
i,i+l i-fl  i 

Table 12.1 

COMPUTER SIMULATION OUTPUTS 

State 

State 
Number 

T 
i 

var T 
i 

T 
i,i+l 

var T 
i,i+l 

N 
i Pi,i+1 

S 1 o 0 0 0 1000 0.473 

C 2 89.5 9,568 89.5 9568 473 0.922 

S 3 109.5 9,843 20.0 0 436 0.706 

c 4 134.8 11,952 27.0 2030 308 0.948 

s 5 152.0 11,891 20.0 0 292 0.733 

c 6 182.0 15,118 30.1 3539 214 0.953 

s 7 200.5 14,752 20.0 0 204 0.819 

c 8 224.5 16,674 30.9 3009 167 0.940 

s 9 245.4 17,296 20.0 0 157 — 

Mean times to first reach state i should also be obtainable by accu- 

mulating the values in the T. .   column as shown in Table 12.2, where 

the T  are repeated for comparison, 
i 

The two estimates for T do not agree because they are over different 
i 

samples; the T. are averaged over only those cases reaching state i, while 
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Table 12.2 

COMPARING MEANS AND VARIANCES 

n-1 

State 

Number 
f 
l 

ZT 
i,i+l 

var T 
i 

>  var T 
Z-f     i,i+l 
i = l 

1 0 0 0 0 

2 89.5 89.5 9,568 9,568 

3 109.5 109.5 9,843 9,568 

4 134.8 136.5 11,952 11,598 

5 152.0 156.5 11,891 11,598 

6 182.0 186.6 15,118 15,137 

7 200.5 206.6 14,752 15,137 

8 224.5 237.5 16,674 18,146 

9 245.4 257.0 17,296 18,146 

the T     are obtained by averaging over all transitions between i and 
i, i+1 

i + 1.  (Since more data are used to estimate the values in the second 

column, their variances should be somewhat smaller.) 

Several other tests of the reasonableness of the Markov assumption 

can be made from the data in Table 12.1.  Since the random variables 

T     are assumed to be independent, their variances should also be 
i,i+l ' 

additive; that is, 

n-1 

var|T ) = >  var T 
\ n/  Z—/     i,i+l 

1=1 

The columns on the right side of Table 12.2 compare the two estimates of 

var T., but they do not agree for the same reasons that the means do not 

agree.  A rough estimate of the average variance per cycle is found by 

averaging the last three values in the var T. .   column; the average 
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variance is (2030 + 3539 + 3009)/3 E= 2859 and the average standard devia- 

tion is therefore /2859 5? 53.5. 

If the waiting time in the search state were exponentially distributed, 

this standard deviation would be expected to be about equal to the mean 

value of 28.9 hours.  The disparity between these values indicates that 

the waiting time densities are not geometric as they are in a Markov chain. 

(Despite this, a Markov chain approximation works quite well.) 

D.   Estimating the Transition Probabilities from Transition Data 

On the basis of the p     column in Table 12.1, the alternating 
i,i+l 

values 0.922, 0.948, 0.953, and 0.940 should all be estimates of 

P[S(n + 1) =: searchls(n) = capture] = p   =  p 
' 23    s/c 

The values cannot be averaged to obtain p  because different sample 

sizes are entailed.  Similarly, the alternating values 0.706, 0.733, and 

0.819 all estimate 

P[S(n + 1) = capture IS(n) = search] = p  = p . 
' 32    c/s 

The value at the top of the column (0.473) is an estimate of 

P(next state is capture]this state is initial search) = p 

From symmetry of the HVU and ADD with respect to the submarine's Initial 

Search, this value is expected to be close to 1/2. 

The weighted estimates of p .  and p . may be found most easily by 
s/c     c/s 

using the N column of Table 12.1. 
i 
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_ 436 + 292 + 204 + 157 
Wc ~ 473 + 308 + 214 + 167 

= 0.9372 

_ 308 + 214 + 167 
5c/s " 436 + 292 + 204 

s 0.7393 

Therefore, the transition diagram for the imbedded chain is that 

shown in Figure 12.4. 

.7393 

START 

FIGURE  12.4      TRANSITION   DIAGRAM  FOR   IMBEDDED CHAIN  OF SIMULATION  MODEL 

From here it is a short step to the Markov chain approximation. 

Weighting the average times T by the N  and normalizing give an average 
i        i 

duration of search of 28.9 hours.  Therefore, the self-loop p  should 

have a value 1 - 1/28.9 = 0.9654 to give the correct average waiting 

time in state 3 (search).  The p  that gives an average of 89.5 hours 

in state 1 is 1 - 1/89.5 = 0.9888.  Similarly, since the average time in 

the capture state (2) is the constant capture time of 20 hours, the value 

of p  is 1 - 1/20 = 0.95.  Normalizing the probabilities shown on Figure 

12.4 for the imbedded chain results in the transition diagram for the 

Markov chain approximation as shown in Figure 12.5. 

With the transition probability estimates shown in Figure 12.5, the 

P(state) as a function of time estimates can be found by raising the 
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START 

FIGURE  12.5      TRANSITION  DIAGRAM  FOR  MARKOV CHAIN  APPROXIMATION 

transition matrix P  to   successive powers.     Figure   12.6   shows   the  following 

principal  curve  of   interest: 

P   (t)   = P(HVU  is  not  detected by  time  t)   -  1 -  P(absorption  in 
M 

state  4 by  time   t) 

Also shown on Figure 12.6 is another estimate of this probability ob- 

tained from the ratios 

P (t) = P(HVU is not detected by t) = 

number of replications for 
which HVU is not detected at t 

number of replications 

[P (t) was calculated from an independent set of 300 replications, the 
s 

1000 replication set used to obtain P (t) could not be used due to com- 
M 

puter limitations.] 

The correspondence between p (t) and p (t) is quite good.  It shows 
M        s 

that the Markov chain approximation may be adequate even though the 

assumption of exponential holding times is not satisfied at the capture 

and search states. 
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The average time-in-state (transmission) matrix is easily found to 

be 

(89.2857 30.9302 41.9256\ 
0 65.3619 88.5976 1 
0        48.3603    94.4537/ 

The (1,1) element is the average duration of the initial search, and 

it agrees quite well with the value 89.5 hours shown in Table 12.2.  The 

average time in the capture state is the (1,2) element (30.9302 hours). 

Therefore, an estimate of the average number of captures per trial is 

average time in capture        30.9302 
=S 1.5 

average duration of a single capture     20 

Since there is only a single absorbing state, the absorption matrix 

A = (I - Q)  must have all components equal to one; this is easily veri- 

fied numerically.  The average time till detection matrix is 

(I - Q)~ (I - Q)~ R = TA 

and no normalization is necessary because of the single absorbing state. 

Using values from Figure 12.5, we obtain 

(162.142\   /mean time to Detect starting in state 1^ 
153.959] = [mean time to Detect starting in state 2 
142.814/   \mean time to Detect starting in state 3/ 

so that the mean time to detection of the HVU is about 162 hours.  (The 

sum of the elements in the first row is also 162.142 hours because there 

is only one absorbing state.) 
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It is informative to consider the individual terms of the inner 

product of the first row of (I - Q) and R, for these terms are the 

average numbers of detections from states 1, 2, and 3, respectively. 

Thus, 

Average number of HVU 

detections from initial search = 89.2857 x 0.0059 = 0.527 

Average number of 

detections from capture = 30.9302 X 0.0031 ss 0.096 

Average number of 

detections from search = 41.9256 x 0.0090 == 0.377 

(The sum of these elements is unity, the probability of absorbing in 

state 4.)  Although there are 1.5 captures on the average, slightly more 

than half of the HVU detections occurred without a capture.  The average 

number of HVU detections from initial search (0.527) is seen to agree 

with the l-to-4 transition probability for the imbedded chain of Figure 

12.4. 

E.   Estimating the Parameters from Average Time-in-State Data 

Section VI-C-2 showed that estimates t  of the average time spent 
ij 

in each state j (given starting state i) can be used to estimate transi- 

tion probabilities.  A set of 50 replications was run to obtain the data 

shown in Table 12.3.  All data were generated starting in state 1; how- 

ever, and the t   must be obtained for starting states 2 and 3 also.  Re- 
ij 

moving the transitions from state 1 to state 2 made it possible to estimate 

the t  with data from the same set of replications; similarly, the t 
2j V " 3j 
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Table 12.3 

SIMULATION OUTPUT WHEN USING AVERAGE TIME-IN-STATE DATA 

State T 
i,i+l 

N 
i 

1 0 50 

2 76.9 27 

3 20.0 26 

4 16.1 24 

5 20.0 22 

6 36.8 15 

7 20.0 13 

8 15.6 11 

9 20.0 8 

10 21.1 5 

11 20.0 5 

12 12.5 2 

13 20.0 1 

14 18.5 1 

were estimated by removing all transitions before the first entry into 

state 3. 

The estimated transition matrix ¥ of average times-in-state is 

(76.9 34 33.6\ 
0 63 62.21 =   (I  -  q> 
0 44.6 64.6/ 

-1 

from which Q is determined to be 
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Q = (I - T) 
-1 

0.006939 

0.950288 

0.034422 

o.oooim 
0.047801 ) 

0.951376/ 

The R is determined so that the sum of the elements in each row of P is 

unity.  Thus, the estimated transition matrix P is 

=(o§ 9 
0.986996 0.006939 0.000111 0.005954 

0 0.950288 0.047801 0.001911 

0 0.034422 0.951376 0.014202 

0 0 0 1      / 

 1~ T 
[A calculation can be made to see whether (I - Q)  R equals (1,1,1) ; the 

T 
result is (1.0000238, 1.0037574, 1.0026789)  which is satisfactorily 

close.] 

th ^(n) 
Raising P to the n  power and plotting 1 - p   as a function of 

time n produces the results in Figure 12.7. 

Another estimate of this same curve for P(no detection by time n) 

was made by using the transition data and average waiting time data as 

in the earlier 1000 replication case. The estimated transition matrix 

P is 

P = 

0.9870 0.0070 0 0.0060 

0 0.95 0.0441 0.0059 

0 0.0357 0.9539 0.0104 

0 0 0 1 

When P is used to determine 1 - p   = P(no detection of HVU by n), 

the curve plots essentially on top of the P-derived curve just found as 

shown in Figure 12.7.  In this case, the two methods of estimating 

P(no detection of the HVU by time n) appear to be virtually equivalent. 

(Whether this will also be true in other contexts is unknown.  It is easy 
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to show by examples that the p   and p   are not identical when estimated 
ij      ij 

from the same data.) 

F.   Average Time Until Detection of the High Value Unit 

In both the simulation model and Markov model, the HVU is ultimately 

detected by the submarine.  Therefore, the mean time until detection is 

implicitly conditioned on detection ultimately occurring.  Since the 

starting state is 1, the Markov chain model gives 

T  = mean time until detec 
D 

tion = [(I - Q) ]  = (I - Q)  |1 

sum of elements of first row of (I - Q) 
-1 

(12.1) 

A more general formula for mean time until detection can be readily 

derived for a semi-Markov model.  The mean time to detect depends only 

on the mean times of the transitions (T  ) and the transition probabili- 
ij 

ties p. . for the imbedded chain.  (This can be seen by conditioning on 

the path taken and noting that the mean time for each path is the sum of 

the mean transition times along that path.)  Therefore, the transition 

time from i to ,j can be considered to be concentrated at the mean, re- 
f. . 

suiting in a z transform of the form p  z 1J on the (i.j) branch. 
ij 

Dropping all the "bars" over the mean times T   is typographically 
ij 

convenient.  Figure 12.8 shows the transition diagram and z transforms 

of the transition time densities. 

The transmission g(z) from state 1 to state 4 is required to calcu- 

late T . 
D 
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T     p  z 
/ ,        14    12 g(z) = Pl4z   +   

:  /   T T +T  \ 
12/     24 23  34 

+ p p  z 
23 24 

P  z 
lF24 

1 " P23P32Z 

T +T 
23  32 

(12.2) 

Differentiating with respect to z, setting z = 1, and rearranging gives 

the average time until detection T 
D 

P     P P    P 
,, „ 12*24 F12F23 

T     =  g   (z  =  1)   = p     T       +pT       H T       +   T 
D        B K14   14        H12   12        1  -   p     p 24        1  -  p     po        23 

23   32 23   32 

P     P     P P     P     P 
12   23   32 12   23   34 

+   T       +   T 
1-pp 32        l-pp_34 

23"32 23   32 

.   (12.3) 

START 

FIGURE  12.8      SEM I-MARKOV  MODEL WITH  ALL TRANSITIONS AT THEIR 
AVERAGE TIMES 

The multipliers of the average times T  are easily interpreted 
ij 

here.  The coefficient of T  is p  , the average number of times that 

the 1 -> 4 transition is made.  Similarly, p   (the coefficient of T ) 

is the average number of times that the 1 -. 2 transition is made.  In 

general, the coefficient of T  is the average number of i,j transitions. 
ij 

Therefore, the average time until detection is a sum over all transitions 
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i -» j, of products of the form 

(average number of i -> j transitions) x (average time required for an 

i ->  j transition) 

Differentiating the T formula of Eq. (12.3) with respect to the T 
D iJ 

gains some insight into the sensitivity of T  to the T  .  Of special 
D        ij 

interest are the average capture time (given a return to search) T  and 

average search time (given a return to capture) T  .  We have 

ÖT      p  p 
D      12 23 

(12.4) 
ÖT23   l  ~   P23P32 

ÖT    p  p  p 

(12.5) 

Thu 

ÖT34   1  ~  P23P32 

S, p  p /(l - p  p  ) is the increase in the average time until de- 
'  12 23     *23 32 6 

tection (T ) per hour increase in average capture time (T  ) for small 

changes in T  ; all other parameters remain constant.  Similarly, a one 

hour increase in T  induces an increase ofp p p /(1-p p  ) hours 
34 12 23*34       23 32 

in T ; all other parameters remaining constant.  Using the p  found for 
D ij 

the 1000 replication case (Figure 12.4) gives estimates 

=• 1.45    hours/hour 
3T 

23 

STD 
  =0.3    hours/hour 
ÖT34 

In the simulation model, the Capture -* Detect HVU transition occurs 

at the end of capture if the HVU is within detection range.  Therefore, 
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T„. = T^ so that the T  term in Eq. (12.3) becomes 
24    23 23 

P12(
P24 + P23) 

P  T 
12 23 

i T  = ,  (12.6) 1-pp     23   1-pp 
23 32 23 32 

which equals the average number of times the submarine is captured.  The 

sensitivity analysis then simply shows that each hour increase in T 

implies an increase of p /(l - p _p„0) = average number of captures T . 

For this example,   the average number of captures is 1.54 so that each 

hour increase in average capture time increases T by this amount. 
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XIII  COMBINING PARAMETER ESTIMATES 

A. Introduction 

Section IV asserted that Markov models have a convenient structure 

for bringing together parameter estimates obtained from various sources 

into a single effectiveness model.  When more than a single estimate of 

a parameter are available, some method is required to combine the separate 

estimates into an overall parameter estimate.  This section shows how 

estimates may be combined in an optimum linear way when the estimates are 

statistically independent and their variances are known. 

Other topics in this section deal with variance considerations in 

Markov chain models when the probability of success is the measure of 

interest.  Variance calculations are first reviewed for a simple Bernoulli 

model and then extended for a more complex model that has some relevance 

for exercise design.  The section concludes with a model for determining 

the amount of effort that should be devoted to sampling at a state in a 

Markov chain model of a simple situation when the costs of sampling are 

considered.  Although the model is too simple to be realistic, it illus- 

trates how the available effort may be theoretically apportioned by de- 

signing exercises to minimize the variance of the estimator for the 

probability of success. 

B. Combining Independent, Unbiased Estimates 

Suppose X and X are independent estimates of the same quantity M, 

and that each is unbiased with common mean M.  Variances of these random 

variables are assumed to be different, however, and they are denoted by 

2      2 
a    and a   , respectively. 
12' 
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Elementary calculus can be used to combine these two estimates in 

the best linear way.  Specifically, if the improved estimate Y is defined 

as a linear combination of X and X by 
1     2 

Y = aX + (1 - a)X (13.1) 

for some fixed nonnegative a, then a can be found to make the variance 

of Y a minimum.  For any a,   Y is an unbiased estimate of M, because 

E(Y)   =  EHIX    +   (1   -   a)X 1  =   SLE(X   )  +   (1   -   a)Ent   ] 

=  aM +   (1  -   a)M  = M . (13.2) 

Since a is a constant and X , X are independent, the variance of Y is 
l'  2 ' 

2 2 
var Y = a  var X + (1 - a)  var X 

1 2 

2  2 2  2 
= a  a + (1 - a) o . (13.3) 

Differentiating Eq. (13.3) with respect to a,   setting the derivative 

equal to zero, and solving for a gives the optimal weights a and (1 - a) 

2 2 
a a 
2 1 

=          1 - a =     . (13.4) 
2    2' 22 

o    + o a    + a 
12 12 

That is, an estimate is weighted in proportion to the variance of the 

other estimate when there are two variables.  From Eqs. (13.1) and (13.4) 

the weighting formula is 

2 2 
o a 
2 1 

Y _   x +   X     . (13.5) 
2    2 12    2  2 

a    + a o+o 
12 12 
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The variance of Y for this value of a is found from Eqs. (13.3) and (13.4) 

var Y 

2  2 
a     a 
1  2 

2    2 
o    + a 
1    2 

(13.6) 

Without loss of generality, we may assume that a    <  a  ,   so that 

2 2  2 2 
o a    a a 
1 12 2 
— < var Y =  < — 
2 2    2 2 

o+o 
1   2 

(13.7) 

If a     is arbitrarily fixed at unity, then the resultant variance of Y may 
2 

be plotted versus a ; 
2 

VARIANCE Y 

The diagram shows that: 

• The variance of the combined estimate is always less than 
the variance of the best estimator. 

• The overall variance is halved when variances are equal. 

The above derivation can easily be generalized to three statistically 

independent estimators of the same quantity M.  If X , X , X are estimates 
2   2  2 12   3 

with mean M and variances o       o      a       then the appropriate linear combina- 
■L A o 

tion is 

Y=aX    +bX    + (1 -  a -  b)X 
12 3 

for  1 >  a,   b >  0 (13.8) 
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The optimal weights turn out to be 

2 2 
a = a a  /D 

2 3 

2 2 
b = o  0  /D 

1 3 

2 2 
l-a-b=aa/D   , (13.9) 

12' 

2 2    2 2    2 2 
where D is the normalizing constant {a  a    + a  a    + a  a  ).  Thus, a weight 

is the product of the other pair of weights, normalized.  (The generaliza- 

tion to four or more estimates will not be done here.  The formula may 

entail more complex functions than might be guessed from extrapolating 

the cases above.) 

C.   Application to Estimation of Transition Probabilities 

Let n  be the number of transitions from i to j observed from N 
ij 

trials of a Markov chain, and let n. be the number of transitions out 

of state i:  n = En  .  Then the natural estimator for the transition 

probability p  is p  = n /n .  Suppose two sets of numbers of transi- 
ij    ij    ij  i 

tion data are denoted by superscripts 1 and 2.  Then the intuitive way 

to combine these data is to simply add the numbers of transitions for 

corresponding i and j 

n  = n   + n      for all i.j    . (13.10) 
ij    ij    ij 

Then the corresponding estimators of transition probabilities p  are 
ij 

(1)   ^     (2) (1) (2) 
n   .     + n   . n n 

5 — 1J - iJ I iJ (13   m 

>       n   .    + n n +n n +n 
Am^ Lij ij J i i i i 

23 2 



Some algebraic manipulation puts this in the form where weights w and 

w are identifiable as are the estimates for the first and second data 
2 

sets. 

ij 

r <!> n 
ij 
(1) n 

L   i 

X 

(1) 
n 

i 

(1) n 
i 

+ r 
(2) 
i     -i 

+ 

(2) 
n 
ij 
(2) 

n 
i- i 

(2) 

(1) ,  (2) 
n   + n 
i     i 

(1)      (2) 
n        n 
iJ ,  ij   w +   w 
(1)  1    (2)  2 

(13.12) 

n n 

The question is  do the weights w , w  agree with the a and (1 - a) de- 

termined earlier?"  Fortunately, the answer is yes. 

To see this, recall that the formula for the variance of the sample 

success probability estimator in N Bernoulli trials is p(l - p)/N, or 

pq/N when q = 1 - p.  Applying this here gives 

.(1) , (1) 
var p   = p q /n 

ij     ij ij  i 

(2) (2) 
var p   = p  q /n 

ij    ij ij  i 
(13.13) 

The multiplier for the second variable (1 - a) is therefore 

2    2 a    + o 
1   2 

P. .Q../n. 
(2) 

(2)-.   (1) ,  (2) 
P. .q. ,/n,    + p. .q ./n      n.   + n 
L ij ij  i J   L 11 ij  i J    l     i 

(13.14) 

which agrees with w .  Since w + w  =1, the value of w will agree also; 

therefore, for the special case of combining transition information from 

independent samples, the simple "add transitions" rule is optimal for 

obtaining estimates of p  with minimum variance. 
ij 

When estimates of transition probabilities are combined that are not 

determined from ratios n /n , the new estimates may not sum to unity. 
ij  i 

For example, suppose transitions can be made from state 1 to states 2 or 

3 in a larger process that need not be specified.  Then, if two estimates 
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of p  are (0.2, 0.3) and of p  are (0.8, 0.7) with corresponding vari- 

ances (1,2) for the p  estimates and (3,4) for the p  estimates, then 

the weighted estimates from Eq. (13.5) are 

2 1       ,        ,       0.7 
p       =    (0.2)  +    (0.3)   =   H12       1+2 1+2 3 

4 3        /        s        3.2  +  2.1       5.3 
p       =    (0.8)   +    (0.7)   =   =   H13        3+4 3+4 7 7 

The weighted estimates do not sum to unity: 

20.8 , 
P12 + P13 = IT +   1 

A slightly revised optimization procedure can force the weighted 

probabilities to be unity.  Let X  and X each have mean p  and suppose 

2 2 
var X = a   ,   var X = o ; similarly, let Y and Y each have mean p  , 

1    1'      2    2 J> 1     2 13' 
2      2 

with respective variances 0     and a   .  Weighting factors a and b are then 

sought such that 

pi2 = aXx + (1 - a)X2    ,    pi3 = bYx + (1 - b)Y2    , 

p  + p  =1    ,    and (var p  + var p  ) is a minimum 
^12    13        '        \    12       13/ 

(13.15) 

Forming the Lagrangian, taking partial derivatives with respect to a and 

b, setting these derivatives to zero, and solving together with 

p      + p       =1  results   in 
*12       *13 

2 2 
0+0 

2 4 
a  = b  = —  (13.16) 

2 2 2 2 
a    + o    + a    + a 
12 3 4 
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when X ^ X and Y 4-  Y .  The resulting variance of p  is 
12     12 12 

var p 
12 

-i 2 

/ 2    2\ V 2    2\ 
(a + a )/(a + a 
\ 1    3/ \ 2    4/ 

1 + 

2 
a + 
1 (a* + aj)/(aj + **)_ 

(13.17) 

The extension to three probabilities (not given here) results in a 

system of four linear equations in four unknowns for the optimal linear 

weights. 

D.   The Variance of the Probability of Success 

Many questions arise when looking into the variance of the proba- 

bility of success p .  On the one hand, we can assume that there is some 
s 

probability of success p —fixed but not known—such that success is de- 

termined by tossing a coin with sides labeled success and fail and which 

comes up success with probability p  and fail with probability 1 - p . 
s s 

This Bernoulli model yields a variance of p (1 - p )/N for N independent 
s     s 

trials, where a trial corresponds to a complete exercise. 

Other models, however, give other variances.  Assume, for example, 

some value of success probability p exists for each fixed set of environ- 
s 

mental parameters, but the environment varies randomly.  Then p  is a 

random variable with a mean and variance, and its mean value p  is the 
s 

average probability of success.  Dropping the subscript s for simplicity, 

assume p is a random variable with mean p and variance v.  The mean and 

variance of the estimator p = (number of successes)/N can be readily 

worked out.  Choose N values of p at random, independently from each 

other.  For each p., perform N  trials (exercises) each resulting in 
i ^ 

success or failure.  Let S  = number of successes using p .  Then S, the 
i i 

number of successes in N X N  trials, is 

Sl+S2+   ••'   +SN 
(13.18) 
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Thus, the estimate of (average) probability of success is p = 

since there are N N  trials in all.  The mean value of p is 

E(p) = E E V(N1N2) 
Nl 

N~N~2-> E(Si/ 1 2T=1 

S/(N N ) 
1 2 

(13.19) 

But, 

E(Si) =E[E(SilP)] =E(V) =N2E(P) (13.20) 

Hence, 

N  X N E(p) 
1    2 

E(p) =   = E(p) = p 

1 2 

(13.21) 

so that p is unbiased as anticipated. 

Similarly, by conditioning on p and using the general formula 

var p = [E(var p|p)] 4- var[E(p|p)]    , (13.22) 

one obtains after some algebra 

-   P(1 ~ P) , 
Var P =  NN   + 

1 2 

N  - 1 
var p  2 

N N 
(13.23) 

Note, this is not equal to the variance obtained when p replaces p in 

the Bernoulli model; in fact, the Bernoulli model estimate gives only 

the first term p(l - p)/N N .  The actual variance is larger by the non- 
1 £ 

negative quantity var p X (N - 1)/N N . 

If this model were to be used for exercise design purposes, some 

very unrealistic designs would result.  Suppose, for example, that the 

k exercises can be performed in all, and that the design problem consists 
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of choosing N and N  to minimize the variance in Eq. (13.23).  The 
A. Ci 

second term in Eq. (13.23) is zero when N  is chosen unity; that is, when 

only a single exercise is performed for each environment.  The trouble 

with the model is that the exercise costs are not considered, and other 

benefits from the exercises are ignored. 

A slight generalization of the above model is easy to derive.  Sup- 

pose that N separate environments can be independently chosen, where the 

th 
probability of success is p for the i  environment.  Perform N  inde- 

i i 

pendent trials in environment i, and let S  be the number of successes. 
N i 

The total number of trials is T,    N , which is denoted by N .  As before, 
N        i=i i ° 

the estimate p = £  S /N  is an unbiased estimate of the average proba- 
i=l  i  o 

bility of success p.  The variance of p works out to be 

N 

N . - J^ N . 1 

IV* c /v 1   P(l - P)  ,       l~  *   i=l >  S /N I =   + var pi"*—* *—*- 
^/ i  of     N           1       2 
a-i        /                           \        No 

(13.24) 

Once again the N. should all be chosen equal to unity in order to 

minimize the variance of p because this choice makes the second term zero 

when the sum of the N  is a constant.  When these N  are chosen, the 
i i 

variance is the p(1 - p)/N , which is the Bernoulli formula for variance 
o' 

with p replacing p. 

E.   Optimal Allocation of Sampling in a Simple Markov Chain 

A simple Markov chain model with four states and constant (but un- 

known) transition probabilities is defined here to illustrate how exer- 

cise effort may be allocated in principle when exercise costs are considered 

and when minimizing the variance of the estimator for the probability of 

success p  is desirable.  The transition diagram with transition proba- 
s 

bilities on the appropriate branches is shown below: 
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START 
SUCCESS 

Because there are no loops in the chain, the probability of success is 

p  = p p  when the process always starts in state 1.  The estimate of 

p will be the product p p  , where the carets denote estimates of p 
s 12 23' 12 

and p 
*13 

Although the ASW operations being modeled always start in state 1, 

we assume that it is possible to perform experiments (exercises) that 

start at either state 1 or state 2 and proceed for only a single transi- 

tion.  Let the cost of an experiment starting at state 1 be c , the cost 

of an experiment starting at state 2 be c ,   and the total resources 

available be c in commensurable units.  Suppose that estimates p   and 

p   are available for the quantities p  and p  .  Variances of these 
*23 *12      13 

estimates are assumed to be available also, with respective values of 

v    and v   .  The experimental design problem is:  Choose the number of 

experiments starting in state 1 (n ) and number of experiments starting 

in state 2 (n ) such that the predicted variance of the estimate of p 
2 s 

is minimized subject to the cost constraint en + en = c. 

(2)      (2) 
The idea is to obtain estimates p   and p   from the n + n new 

experiments, weight these estimates in the optimal linear manner as de- 

rived in Subsection B, and minimize the variance of this weighted esti- 

mator.  Some assumptions must be made about the variances this new set 

of transition probability estimators because they depend on the unknown 

values of the true transition probabilities. 
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If an average value approach is used, the predicted mean and vari- 
(2)     (2) , 

ances of p   and p   (the estimates obtained from n  trials starting 

at state 1 and n  trials starting at state 2) are: 

*12 12      L F12 J     1 

(2)       (i) r,       (i) 
var  p„„ 

23 Sp
(1)   Tl - P(,1/n (13.26) 

*23     L *23 J     2 

«-!" 

LP23-HP23 ' (13-28) 

Letting p  and p  be the predicted weighted estimators for p  and p  . 
X. A Ao X.A Ao 

Eq. (13.6) yields the predicted variance 

(1)   (2) 
v       v 

12     12 1 , 
V-  P12  -     (1) (2)   = 7  (13'29) 

v  „    + v. „ 1 1 
12 12 -—— + 

(1) (1)    r, (1) 
v p 

12 P12 \} - Ü1 
and a predicted mean 

(2) (1)   (1) (2) 
v   D   + v   n 

(1)         „ (2)    12 *12     12 H12 
pi2 = ap^ + (1 - a)pi2 =    .   (13.30) 

V12 +V12 

Similar expressions hold for the 2 -> 3 transition, with subscripts 12 

replaced by 23 and n replaced by n 
X. A 

from! here on since they are all (1). 

replaced by 23 and n replaced by n .  All superscripts may now be dropped 
X. A 
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The variance of the product of two independent random variables (X 

and Y) is easily shown to be 

var (XY) = E(X ]E(Y J   -   E (X)E (Y) (13.31) 

Applying this formula to p  = p p  gives 
S      1Z lü 

var (h)= E(p2
2)

E(4) - E2(PI2)E2(P23)   •     (l3-32) 

Equations (13.29), (13.30), and (13.32) imply 

var p = 
s + P 12 

+ 
v    p 
12   *12 P^J 

+ P 23 
  H  
V      D 
23   F23 P^J 

[(P12P23)]' 

(13.33) 

Expression (13.33) is to be minimized with respect to n , n  subject to 

the cost constraint 

en + c n = c 
11   2 2 

(13.34) 

and nonnegativity constraints 

n ,n > 0 
1' 2 

(13.35) 

For convenience, define new variables a „, b  , a  , b  by 
' 12'  12'  23'  23 y 

12 ^«f1 " Pl2) 

b   = p  (1 - p   /v  I 
12   *12\    *12   12/ 
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a  = p 
23   *23 i1  ~  P23) 

b23   P23l1 ~ P23//V23 

Equation (13.33) then takes on the simpler form of Eq. (13.36) 

-    /  a!2  \ /  a23  \   2    a!2      2    a23 
var ps = b—TV   b—TIT + p23 b—— + pi2 F-TV     •   (13-36) 

\ 12    1/ \ 23    2/        12    1       23    2 

The usual procedure for constrained optimization may then be followed. 

Let \  be the Lagrange multiplier for the cost constraint in Eq. (13.34). 

Differentiating the Lagrangian var p + \(c n +cn) partially with re- 

spect to n and n , equating the partials to zero, and doing some algebra 

results in 

 |a, Jb, +n ) + p„„(b +n ) "1 = ra„Jb„„+n„) + p 0(b +n ) 1 
c  a  Ll2\ 12  1/   v\2\   12  1/ J   L 23\ 23  2/   H23\ 23  2/ J 

(13.37) 

Replacing n by (c - c n )/c  on the right hand side (RHS) of Eq. 

(13.37) and doing some algebraic manipulation yields 

2 
RHS  of  Eq.   (13.37)   =R+Rn    +Rn , (13.38) 

o 11 2   1 

where 

Ro  =  a23b23  +  a23 f + 4(b23 + f) (13'39> 

C
l 2   / c\Cl 

R    = -a       — -   2p       b       H 1— (13.40) 
1 23   c P23l   23       c   Ic 

2 \ 2/2 

R     =  P
2
JC ,/cJ . (13.41) 

2       F23\   1     2/ 
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Similarly, the left hand side (LHS) of Eq. (13.37) can be expanded to give 

where 

2 
LHS  of  Eq.    (13.37)   =L+Ln+Ln , (13.42) 

o   1 1   2 1   ' 

a  c 
23  1 

i-i    — 
o  a  c 

12  2 

a  c 
23 1 

Li      — —^—— 
1  a c 

12 2 

/ 2  2 \ 
(ab  + p  b (13.43) 
\ 12 12   *12 12/ 

/a  + 2p  b  ) (13.44) 
\ 12    *12 12/ 

a  c 
23 1  2 

L2 = — P12    ' (13'45) 
12 2 

Equation (13.37) now becomes 

2 2 
L +Ln + L n = R +Rn +Rn (13.46) 
o    11    21    o    11    21 

from which n may be found by the quadratic formula.  In general, n will 

not be an integer; but it will be necessary to round to an integer.  If 

n is negative, it should be replaced by zero; if n -  (c - c n )/c  is 
1     e    ' y J 2        112 

negative, the n  should be replaced by zero and n  should be recalculated 
Lt i. 

■k 
from n = (c/c ). 

Table 13.1 shows some results from the optimization procedure.  Ini- 

tial data were calculated as though they were from complete trials with 

equivalent sample sizes (ESS).  The final column shows the ratio of the 

final standard deviation to the initial standard deviation.  Since cost 

ratios c /c and c /c were used as parameters, the cost constraint was 

(c/c) + (c/c) = 1. 

242 



Table 13.1 

TYPICAL VALUES OF OPTIMAL N* N* 

(Not Rounded) 

pi9        po-i ESS      cy°      c„/c N N* a /a 12 23 12 1 2 Final     Initial 
. 5 0 0 . 50 0 25 . 0 0 1 . 0 0 1 81 3, 73 3 ! 86. 26.7 -•■■.Krr 

B >.". ».r. •...' 
'■ 

.50 0 .50 0 25 . 0 0 1 . 0 1 0 624. 008 ,37.599 .'+1 8 

.50 0 . 50 0 25 .001 .0 25 1 0 0 0 . 0 0 0 0 . .811 

. 50 0 . 50 0 25 . 0 0 1 ■ 1 0 0 1 0 0 0 . 0 0 0 0 . .81 1 

. 50 0 .50 0 25 . 0 1 0 . 0 0 1 72.174 278.261 .334 

. 50 0 .50 0 25 . 0 1 0 . 0 1 0 55.463 44.537 .495 

. 50 0 .50 0 25 . 0 1 0 .0 25 46.439 21.424 . 597 

. 50 0 .50 0 25 . 0 1 0 . 1 0 0 57.945 4.20 6 . 768 

. 50 0 .50 0 25 . 0 25 .001 29.576 2 6 0 . 6 0 9 .423 

. 50 0 .50 0 25 . 0 25 . 0 1 0 19.693 50.767 . 559 

. 50 0 .50 0 25 . 0 25 . 0 25 15.614 24.386 . 652 

. 50 0 .50 0 25 .0 25 . 10 0 16.40 7 5. 898 . 80 5 

. 5 0 0 . 50 0 25 . 1 0 0 . 0 0 1 6.894 310.569 . 530 

. 50 0 . 5 0 0 '"lCl . 1 0 0 . 0 1 0 2. 469 75.313 . 626 

.50 0 .50 0 ■-| C7 . 1 0 0 .0 25 .335 38.659 .697 

. 50 0 .50 0 . 1 0 0 . 1 0 0 0 . 1 0 . 0 0 0 837 

. 50 0 . 50 0 1 0 0 . 0 0 1 . 0 0 1 670.70 8 329.292 . 361 

.50 0 .50 0 1 0 0 . 0 0 1 . 0 1 0 477.483 52.252 . 61 8 

.50 0 . 50 0 1 0 0 . 0 0 1 . 0 25 541.996 18.320 '773 

.50 0 . 50 0 1 0 0 . 0 0 1 . 1 0 0 1 0 0 0 . 0 0 0 0. ■ O '•.■> tL 

. 50 0 . 50 0 1 0 0 . 0 1 0 . 0 0 1 56.162 438.383 . 529 

.50 0 . 50 0 1 0 0 . 0 1 0 . 0 1 0 26.446 73.554 .729 

. 50 0 . 50 0 1 0 0 . 0 1 0 . 0 25 28.0 85 28.766 . 826 

. 50 0 .50 0 1 0 0 . 0 1 0 . 1 0 0 84.860 1.514 . 9 0 9 

. 50 0 .50 0 1 0 0 .0 25 . 0 0 1 18.277 543.0 82 . 580 

.50 0 .50 0 1 0 0 . 0 25 . 0 1 0 0 . 1 0 0 . 0 0 0 .744 

. 50 0 . 50 0 1 0 0 . 0 25 . 0 25 0 . 40 . 0 0 0 . y •-> o 

.50 0 . 50 0 1 0 0 .0 25 . 1 0 0 14.690 6.32 8 . 939 

. 50 0 .50 0 1 0 0 . 1 0 0 . 0 0 1 .414 958.624 . 60 2 

.50 0 .50 0 1 0 0 . 1 0 0 . 0 1 0 0 . 1 0 0 . 0 0 0 . 744 

. 50 0 .50 0 1 0 0 . 1 0 0 .0 25 0 . 40.0 00 C; ~?t O 

.50 0 . 50 0 1 0 0 . 1 0 0 . 1 o 0 0 . 1 0 . 0 0 0 .943 

.300 .80 0 25 . 0 0 1 . 0 0 1 9i'i5.4:/6' ^'.S'zT 

. 50 0 .80 0 25 . 0 0 1 . 0 1 0 10 0 0 .000 0. ^ o p 

. 50 0 .80 0 ■ j rr . 0 0 1 . 0 25 1 0 0 0 . 0 0 0 0. rroo 

.50 0 . 80 0 25 . 0 0 1 . 1 0 0 1 0 0 0 . 0 0 0 0 . c: rt n 
■ ■ J '_' O 

. 50 0 .80 0 25 .010 .001 85.778 142.223 .419 

.500 .80 0 25 .010 .010 78.758 21.242 .531 

. 50 0 .80 0 25 . 0 1 0 .0 25 79.357 8.257 . 598 

.50 0 . 80 0 25 . 0 1 0 . 1 0 0 1 0 0 . 0 0 0 0. .681 

.50 0 .80 0 25 .025 . 0 0 1 34.50 5 137.382 . 552 

. 50 0 .80 0 25 . 0 25 .010 30.331 24.173 .641 

.50 0 .80 0 25 .0 25 . 0 25 29.560 10.440 . 696 

.50 0 .80 0 25 . 0 25 . 1 0 0 39.341 . 1 65 . 765 

.50 0 .80 0 25 . 1 0 0 .001 8.430 157.006 .719 

.50 0 .800 25 . 1 0 0 . 0 1 0 6.281 37. 191 r i' O 1L|! 

. 50 0 .800 25 . 1 0 0 .0 25 5.544 17.825 . S2H 

. 50 0 .80 0 orr. . 1 0 0 . 1 0 0 6. 8 6 6 :■'. 134 ft;-! 7 
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XIV POSSIBLE OPERATIONAL APPLICATIONS 

A.   Effectiveness Applications 

1. False Contacts 

The nine-state false contact model developed in Section X can 

be used to replace the traditional, conditional probability model based 

on the sequence Opportunity —  Detect -» Classify -• Attack -» Kill in a 

false contact environment.  When data from complete exercises are used 

to estimate parameters, the value of the effectiveness measure (probability 

of kill) will be unchanged but the influence of false contacts will have 

been made explicit.  Among other advantages, this explicitness enables 

one to do sensitivity analysis by varying the average time to prosecute 

a false contact to determine the impact on effectiveness. 

The 27-state false contact model, which includes attacks on 

false contacts, may also be used to replace the traditional, conditional 

probability model.  With this model, weapon expenditures on false con- 

tacts can be estimated as well as the probability of killing the actual 

submarine. 

Many other forms of false contact models may be formulated by 

using Markov methods.  Further, such things as the kind of the false 

contact and alertment status in the state definitions can also be dis- 

tinguished. 

2. Countermeasure Environments 

Markov models may be defined for complex mission environments 

that entail the use of certain kinds of countermeasures.  This form of 
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model should be well-suited to model countermeasure environments because 

of the crucial importance of information in these environments and the 

fact that states of a Markov model are readily definable in terms of in- 

formation.  When states have been satisfactorily defined, countermeasures 

can influence events directly associated with the basic model parameters 

in two ways: 

• The countermeasures influence the next information 

state in a manner directly associated with the transi- 

tion probabilities p. . (for i ^  j) . 

• The mean time in an information state is directly asso- 

ciated with the holding time parameter p 
ij 

An example of this concept used in analytical countermeasure 

modeling is the semi-Markov model developed in Ref. 6.  In this model, 

the important information state was designated capture and the mean time 

in this state (capture time) was the principal parameter used to charac- 

terize an acoustic decoy. 

The UPTIDE series of exercises provides an example of an opera- 

tional environment in which states have been tentatively defined and data 

have been gathered on the time spent in these states.  Two sets of states 

are defined:  one for the Blue forces and the other for an Orange sub- 

marine.  The High Value Target (HVT) information states are defined in 

terms of the existence of false/valid contacts. 

• No false contacts and no valid contacts 

• False contacts and no valid contacts 

• Valid contacts and no false contacts 

• Valid contacts and false contacts. 

States for an Orange submarine were defined in terms of both submarine 

information and the submarine's activity relative to the Blue forces. 

Labels on some of the states were Lured, Deceived, Evading, Search, 
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Confused, and Had Knowledge of the HVT.  Several combinations of these 

states, such as Lured and Deceived, were also used. 

Apparently little has been done with the collected data beyond 

the tabulation of the percentages of time spent in the various states and 

the number of entries into each state.  Because transition data were not 

tabulated for the exercises, it is difficult to determine how well a 

Markov model fits the data or to perform a sensitivity analysis. 

As they are currently defined, these states are probably un- 

suitable for effectiveness modeling.  The state space should be more de- 

tailed to include the traditional functions detect, classify, and attack 

and further refinements such as a breakdown of detection into first CZ 

detections and record CZ detections.  Separate states should be provided 

to distinguish these differing types of detection opportunities for the 

HVT, other surface ships, and acoustic decoys.  Classification of surface 

targets by submarines should also be represented in the state definitions. 

Because submarines may erroneously fire on acoustic decoys, the state 

space should reflect this potentially important contribution of decoys 

to overall ASW systems effectiveness. 

If a Markov model were successfully fitted to UPTIDE data, some 

important sensitivity analyses could be performed and quantitative trade- 

offs could be established.  A sensitivity analysis similar to that per- 

formed in Section XII could give an estimate of the number of hours in- 

crease in average survival time for each hour increase in mean capture 

time.  Examples of interesting trade-offs are: 

•  The relationship between the range at which an acoustic 

decoy is detectable (an acoustic power consideration) 

and the length of time that a submarine is captured 

(a fidelity consideration). 
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• The relationship between the range at which the HVT 

can be detected and the probability of its being 

misclassified. 

• The relationship between the probability of survival 

of the HVT and other quantities such as the mean time 

acoustic decoys were operative. 

B.   Other Applications 

Throughout this report, the emphasis has been on ASW effectiveness 

modeling.  However, applications of the methodology to real naval problems 

should not be limited to effectiveness models because they may also be 

applicable to important problem aspects related or ancillary to effective- 

ness.  Markov models are potentially valuable in the four areas discussed 

below.  These areas include a dynamic model of the: 

• Range between a submarine and a HVU 

• Electromagnetic radiations from an aircraft carrier 

• Submarine classification process 

• Submarine exposure. 

1.   Distance Between a Submarine and a High Value Target 

Because so many tactical interactions are ultimately a function 

of range, one quantity of special interest to model dynamically is the 

distance between two major participants such as the enemy submarine and 

an aircraft carrier in a given scenario.  A dynamic model of this range 

may be useful in several applications; in particular, the model may be a 

useful component in the design of a real-time tactical decision-making 

aid for the Officer in Tactical Command (OTC).  The model may provide 

useful quantitative answers to the following questions.  All questions 

will assume that some information on the current range to the submarine 

is available and expressible as a probability distribution. 
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What is the mean length of time until the submarine 

first comes within two convergence zones of the car- 

rier? One convergence zone? Expected range of detec- 

tion via direct path? 

What is the probability that the submarine will not 

come within a specified distance (say 30 mi) of the 

carrier in the next 24 hour period? 

What is the probability distribution of the current 

range?  (From this distribution, such quantities as 

the median current range, the probability that the 

range exceeds that at which a UHF transmission could 

be detected by the submarine, and the probability that 

the submarine is beyond the range of periscope detec- 

tion can be determined.) 

2.   Radiation from an Aircraft Carrier 

One may consider the detectable electromagnetic radiation from 

an aircraft carrier as a random process.  A model of this process may be 

a useful component in a larger model in which the carrier is detectable 

by any one of several sensors.  (In principle, all forms of detection can 

be considered in a single model by relating sonar detectability to carrier 

speed and screw usage and periscope detectability to time of day.)  A 

state of detectable radiation would be defined in a Markov model in terms 

of the radiating equipment:  State 1 may be occupied when there is com- 

plete EMCON, state 2 may be occupied when HF radio is being used, state 

3 may be occupied when the surface search radar is energized, and so 

forth.  Obviously, many combinations of radiators must also be considered. 

Inherent in this model are such quantities as the mean total 

time each sensor is used during the exercise, the mean time between suc- 

cessive uses of a given sensor, and the mean length of each kind of 

transmission. 
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3. Submarine Classification Process 

This model would be a dynamic model with absorbing states repre- 

senting the final classification used to determine the parameters in a 

confusion matrix.  (Indeed, the absorption probabilities found from the 

dynamic model will be closely related or identical to entries in the 

confusion matrix.)  Dynamic quantities such as the mean time to classify 

a HVT correctly, the probability of ever holding an erroneous classifica- 

tion, and the like should be readily computable from the model.  States 

will bear such labels as "possible carrier," "probable carrier," "certain 

carrier" in this model. 

4. Submarine Exposure 

This model relates to detection in a manner similar to the air- 

craft carrier radiation model.  States would be defined in terms of de- 

tectability of the submarine; exposure of the attack periscope would 

correspond to occupying a certain state, exposure of ECM masts another 

state, and so forth. 

C.   Recommendations 

(1)  A research project to apply the dynamic Markov modeling methods 

developed during this study should be undertaken in an area of current 

interest to the Navy.  The model should be developed for a class of tac- 

tical problems where wholly satisfactory measures of effectiveness have 

not yet been developed because of the dynamic nature of the problem, 

the complexity of the problem, or the difficulty of relating lower level 

performance measures to the overall effectiveness measures.  The Naval 

Analysis Programs Office of the ONR could sponsor such research as a 

continuation of the Queueing Methodology study. 

250 



(2)  The technique of using a Markov model to compare dissimilar 

models or to assist in validating a simulation model should be suggested 

to Navy analysts concerned with simulation validation and effectiveness 

modeling. 
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Appendix A 

RELATED ASW MODELING 

1.   General Discussion 

A survey of recent analytical ASW modeling that is related to the 

current SRI research is presented in this appendix.  The relationship be- 

tween these works and the SRI research is also discussed. 

Aside from the direct applicability to ASW situations as depicted in 

this report, these techniques are in some ways similar to but in other 

respects generalizations of applications of queueing and Markov or semi- 

Markov analysis appearing in other recent work in the ASW field. 

Much of the earlier work in ASW analysis has centered around compu- 

tation of total system effectiveness as compounded by a host of influencing 

factors that in a sense may be represented by a series of necessary stages 

for success of an ASW mission in a logical sequential order.  That is, an 

approximate description of ASW functions is the traditional series of 

stages in so-called WSE models: 

Opportunity -» Detect -> Classify -» Localize -* Attack -» Kill 

As shown in Section III, this series leads naturally to a Markov presenta- 

tion from the assumption that all transitions in the series are independent 

of previous ones and additional exit transitions to a fail state are 

available.  This traditional series of stages produces a simple formula 

for the probability of success: 

P.  = P  • P  • P  • P  • P 
so   D   C   L   A   K 
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At this point, an explanation of the gross effect of dynamic inter- 

actions on the nature of mathematical models as frequently used in ASW 

analysis seems worthwhile.  A specific example is the simple concept of 

a multiple server queue used in Conolly's ASW model.11  The only reason 

that a queue has to have a waiting line (in the ASW case, this would con- 

sist of contacts not yet detected or pursued) is that dynamic interaction 

occurs.  That is, if arrivals are distributed (in probability) so that 

they can accumulate to more than the "servers" can handle in some given 

period of time, then some arrivals would have to wait before beginning 

service.  Conolly assumes an infinite amount of service facilities (prose- 

cuting destroyers) and therefore experiences no waiting for service, but 

he allows service time to depend on number of arrivals still in the sys- 

tem.  More generally, crisis situations in ASW contact prosecution may 

entail excessive congestion at certain ASW function levels so that some 

contacts might have to wait to be served.  An accurate measure of threat 

to forces protected by the ASW team is essentially impossible to deter- 

mine without dynamic analysis of the degree to which unprosecuted contacts 

can accumulate, for how long, at what range, and so on.  This fact was 

recognized in the MAFTEP outline that led to the current project and has 

been slowly permeating recent work on ASW effectiveness modeling.1'11-17 

In its early development, dynamic analysis of ASW effectiveness has 

been mostly of a qualitative nature.12-15  A number of new, advanced, 

analytical approaches for modeling ASW effectiveness have recently been 

introduced, including decision-theoretic techniques (principally statis- 

tical hypothesis testing)13'13 and queueing theory.11'14'15  To our best 

knowledge, actual analytical evaluation of ASW models before the current 

work has found little application of advanced concepts beyond a Markov 

or semi-Markov process with a few states.16'17  The analysis during the 

first year's work on the current project entailed queueing models repre- 

sented by highly dimensional vector Markov processes along with flow 
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graph techniques and recent developments in successive overrelaxation 

methods.1 

The current work centers mainly on discrete-time Markov and semi- 

Markov modeling with moderate numbers of states, and the analysis indi- 

cates that considerably higher dimensions could be used without stepping 

beyond the bounds of computational feasibility.  Advanced techniques used 

in the current work include flow graph methods for discrete-time semi- 

Markov processes (using Z-transforms), special matrix methods or quadratic 

programming for least squares fitting of Markov process parameters to 

observed data, and concrete examples of ASW models to demonstrate applica- 

bility of these techniques. 

The new developments of the current study relate to earlier ASW 

analyses in two principal ways: 

• Interpretation and means of generalizing their approaches in 
terms of more advanced techniques. 

• Motivation for and justification of Markov techniques applied 
to ASW analysis, as performed under the present contract. 

As expounded above, the general theory of Markov and semi-Markov 

processes leads to very powerful tools for stochastic process analysis, 

somewhat analogous to the technique of linearization in the areas of 

mathematical programming, differential equations, and operations research. 

In spite of much advanced formulation of new concepts in all these areas, 

about the only way to obtain numerical results effectively is to Markovize 

a complex analytical formulation.  Again, a good example of this is the 

successful computations in the first year's work on this contract with 

Markov processes having a thousand states used to analyze an ASW conges- 

tion situation originally formulated in terms of queueing theory. 
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In the sections below, the ASW analyses referred to above will be 

treated individually to explain in greater detail their relationship to 

the current work. 

2.   Wagner ASW Model with False Contact Considerations 

Daniel H. Wagner Associates recently concluded an investigation into 

the possibilities of modeling ASW performance with primary emphasis on 

measuring effects of false contacts.13'13  The Wagner ASW model subdivides 

ASW operations into the following two categories:  detection and classifi- 

cation, and command level decisions and actions.  The interplay between 

these two areas may be viewed as a dynamical feedback process,12,13 with 

updated classification information proceeding to the command and action 

model and sensor team instructions feeding back to the sensor model, as 

indicated in Figure A.l. 

1 Instructions 

Reports 
TARGETS SENSOR 

TEAMS 
- Detect 
- Classify 

CO 
- Completes 
CLASSIFICATION 
- Directs 

MISSIONS 
- Localization 
- Attack 
- Kill FALSE 

TARGETS - Mission 

I 
BROADER  BASE OF INFORMATION 

- Activity of other mission phases or platforms 

- Intelligence 
- Possible consequences of action 
- Previous encounter information 

SOURCE:     References  12  and   13. 

FIGURE A.1  BASIC STRUCTURE OF WAGNER ASW MODEL 

Within the Sensor Team block of the flow diagram in Figure A.l, the 

Wagner report describes in greater detail how information processing 
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interacts as the various types of sensor teams and units among one type 

function together.  This is depicted in Figure A.2.  Basically, these 

Individual 
Sensor Teams 

TARGETS 

FALSE 
TARGETS 

n 
Supervisors 

To CO 

From CO 

SOURCE:      References  12  and   13. 

FIGURE A.2  INTERACTION WITHIN THE "INNER SANCTUM" 
OF THE SENSOR TEAMS 

interactions are in the form of reports of contacts made or updatings 

of characteristics of earlier reported contacts for the benefit of other 

sensor teams and the supervisors in making or updating their classifica- 

tion decisions.  Thus, the arrows in Figure A.2 may be interpreted as 

indicating flow of information on a statistical basis.  This viewpoint 

gives the first indication of a relationship with the analysis of the 

current project; that is, the Wagner model may be regarded as (or at 

least approximated by) a Markov process, or perhaps more generally a 

semi-Markov process, whose states are described by levels of information 

content and classification pertaining to a specified number of contacts. 

In the first year's work on this contract, four levels of action on up 

to four contacts on actual submarines in the system were considered in a 

simplified dynamical ASW model. 

The Wagner model does not explicitly discuss the dynamics of how 

various contacts' penetration levels interact in the information processing 
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system of Figures A.l and A. 2.  Rather, the primary emphasis is on modeling 

the decision-making mechanism by (Neyman-Pearson type) statistical hypothe- 

sis testing.12'13  The extensive formulation of state vectors and their 

functional interrelationship results in a precise mathematical statement 

of the relations among the following quantities or logical (Boolean) 

variables (for hypotheses): 

• Detection/Classification Phase 

- At-sea environment factors 

- Classification clues present 

- Perception probabilities for specific objects detected 

- Hypothesis that object observed is of a certain classification 

- Rejection probabilities 

• Command/Action Phase 

- Possible tactics of contacts 

- Hypothesis that contact is employing a certain tactic 

- Current classification information 

- Tactical mission decisions. 

Many others are omitted here for the sake of brevity. 

For the type of approach put forth there, the Wagner report indicates 

an important application to ASW simulations.  Presumably, any dynamical 

interplay not explicitly considered in the Wagner model itself would be 

relegated to treatment by the time varying mechanics of the model being 

simulated.  Some dynamical aspects of ASW modeling are introduced in the 

Wagner analysis in a typical curve for temporal variation in perception 

level (see Ref. 12, Chapter IV), in discussions pertaining to implementa- 

tion in simulations (see Ref. 12, Chapter V), and in statements regarding 

assumed statistics of contact arrivals and classification time (Ref. 13, 

Appendix B). 
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A possible useful extension of the Wagner work might be an attempt 

to carry over the analysis to a dynamic level by suitable embedding of 

Markov chains as was done on this contract in another context.  An out- 

line of how this might be achieved follows below. 

The first step necessary for Markov representation of ASW operations 

as described in the Wagner reports is to decide on what ASW events may be 

set apart—or perhaps combined with others—to form distinct states of 

the system.12' 3  In doing this, it is also necessary to consider whether 

the system can be logically regarded as transiting from one of these 

states to another without too much interference from still other omitted 

factors.  These could be, for example, long-term value information about 

a contact determined early in the detection to prosecution sequence. 

The Wagner model was already formulated in terms of a Markov process 

in the simulation of Ref. 13—Appendix B.  In fact, 16 states were clearly 

delineated, but only simulation was attempted.  Our model was very closely 

related in that progress of contacts "through the system" described the 

state of the system, and transitions between states were similarly 

described although we did not consider as many states and transitions for 

a given contact.  The much higher dimensionality in our model arose from 

combining possible states of various simultaneous contacts.  Hence this 

feature appears to be the next step in generalizing the Wagner model 

toward a more realistic one, and the efficient computational techniques 

used in our work—namely, flow graph methods, Successive Over Relaxation 

methods, or direct Laplace transform evaluation and inversion—would 

succeed in arriving at solutions for an extended model along the lines 

of the basic Wagner approach. 
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3. Operations Research Incorporated ASW Queueing Model 

A parallel study to the current contract was aimed at modeling ASW 

operations of a patrol submarine in terms of queueing concepts and tech- 

niques.  At its outset, a queueing structure was formulated similar to 

our unit model of the first year's work on this contract.14  Later, 

emphasis changed to modeling of the classification process. 5'16  An 

analytical formulation for the probability of classifying by a given time 

was also worked out, taking multiple contacts into consideration.  Some 

generally useful concepts for ASW modeling introduced by ORI in their 

model were the "classification window" and the "growth of information" 

idea for controlling the incidence of actual ability to classify.  These 

concepts, although not formally stated, appear to be the basis of other 

ASW analyses, as will be indicated further below. 

4. Semi-Markov Mission Analysis 

Semi-Markov models of aircraft operations in ASW and general target 

search,16'17 were recently formulated with several states to represent 

various reasonably distinguishable stages of such operations.  Laplace 

transforms were used in both cases in ways similar to the applications 

on a single unit ASW model.1  Flow graphs were used to aid formulation 

and organize computations, as in our work, and simple examples were worked 

out.  Solutions were obtained analytically in closed form, by inversion 

of some elementary Laplace transforms. 

Both these models involve stages of a process (search for targets) 

that are passed through more or less independently of activity at other 

stages, thereby leading to a fairly good Markovian model.  The situation 

in Ref. 16 is simplified further than in Ref. 17 by the assumption that 

only one contact held at any one time.  The possibility of false contacts 

is handled by considering states of "disturbance," which can be interpreted 
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as either diversion to pursuing an attacker on the target searching unit 

or changing over to a possible target of perhaps greater importance to 

the search mission.17 

5.   Semi-Markov Models of Search in the Presence of Decoys 

J. M. Moore of SRI has recently introduced a three-state and four- " 

state semi-Markov model for a patrolling submarine versus HVTs and decoys 

operating within a specified area.6  As in semi-Markov mission analysis, 

states were selected to represent well-distinguishable operational con- 

figurations with transitions between them being clearly defined and 

justifiably approximated by Markov-type behavior.  Although Moore's model 

has a small number of states, it is firmly founded on an operational 

basis, with consideration of a reasonably detailed structure of searcher 

and evader maneuvers to arrive at formulas for parameters in the semi- 

Markov model in terms of measurable or at least known or postulated opera- 

tional data.  In this sense, his model is more practical than our unit ASW 

model of the previous year's work under the current contract; our model's 

semi-Markov structure was far richer (in fact, up to a thousand states 

were allowed), but this structure was arrived at by analysis of a postu- 

lated operational description that was quite elementary.  Our actual 

operational states were few in number (describing the number of contacts 

held), and the analytical model's states arose from strongly distinguish- 

able combinations of where individual contacts are located in the model's 

partitioning of events into stages (detection, localization, and such). 

Another important feature of Moore's work is that a parallel simula- 

tion study was conducted at SRI10 for comparison of model accuracy and 

validation.  This simulation model is discussed and used in Section XII 

of this report. 
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As with the other related analyses, a significance of our develop- 

ments using flow graphs and other multidimensional-oriented techniques 

is a possible approach to computations when Moore's type of model is ex- 

panded to greatly larger number of states.  From the other direction, 

Moore's reduction of an operational situation to a low-dimensional model 

is a valuable technique to maintain closer ties with "the real world" in 

modeling.  A similar approach was begun but not completed in our single 

unit ASW model when it was found that too many states arose in a Markov 

model as a result of combinations of possible contact locations. 

6.   Passive Sonar Classification Model 

A mathematical model of contact classification by passive means was 

developed at SRI and used on several projects in the ASW area.18  The 

basis of this model is consideration of a sequence of information-gathering 

stages related to acoustic and kinematic aspects of passive sonar search. 

As quality and quantity of information fluctuates stochastically, a ten- 

dency toward some postulated and recognizable pattern class may emerge 

and be interpreted as a cue to update current classification of a possible 

contact. 

This basis is similar to the ORI approach previously referred to and 

also to our expanded ASW unit model (Section II-C).  The key concept in 

all three cases is that of growth of information as a measure to be related 

through a dynamical model to a decision process.  In our work and the 

parallel ORI efforts, the dynamical aspects were put in the form of a 

Markov process.  There is ground to believe that the SRI passive sonar 

classification model could be represented in Markov or semi-Markov form 

for application in mission analyses along the lines of Refs. 6, 12-17, 

thereby bringing into such models a more realistic representation of 

acoustic signal processing.  A good approximation to the complex process 
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described in Ref. 18 might be to consider  lumped states" created by 

conditions of acoustic activity leading to the "pattern classes" considered 

there, and to regard changes in recognized patterns as Markov-type transi- 

tions, provided that these could be shown to exhibit suitable properties, 

especially independence of past history of pattern transitions. 

7. Conolly Model of ASW in Terms of Congestion Theory 

An elementary queueing-type model of ASW operations was proposed by 

Conolly for the situation of an ASW force attempting to clear a pro- 

tected area of enemy submarines.11  The model assumed Poisson arrivals, 

i.e., detections of submarines in general and independent service time 

distributions (for the contact prosecutions).  A method for calculating 

the probability distribution of time to clear the protected area was de- 

rived in closed analytical form.  In none of our more complex models were 

analytical, closed-form solutions ever found to be practical.  Numerical 

solutions, however, were always feasible. 

8. SHAREM Analysis—Markov Models of an ASW Screening Mission 

A nine-state Markov model of a typical ASW screening scenario was 

used in post-analysis of a SHAREM exercise sequence.19»30  Standard 

Markov absorbing state probability calculations were used to analytically 

formulate MOEs and to evaluate sensitivities with respect to transition 

probabilities.  Exponential distributions assumed for contact holding 

times were found to be quite consistent with exercise observations.30 
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Appendix B 

SELECTION OF PARAMETER UJ 

The range derived for uo was thought to lie in the range 1 < uu < 2, 

when the eigenvalues of the iteration matrix are all real.31  However, 

it was later realized that the optimal parameter uo may sometimes have to 

be less than 1 when complex eigenvalues exist for the iteration matrix 

labeled Q in Appendix B-2 of Ref. 1.  Since investigation subsequent to 

initial work revealed the presence of complex eigenvalues, a value of 

CD = 0.9 was tried, and the number of over-relaxation iterations per inte- 

gration step was reduced from about 13 to about 6.  Some effort was spent 

on analyzing the relationship between UJ and the convergence rate, and 

Figure B.l demonstrates the loci of eigenvalues of the iteration matrix 

£  (defined further below) as uu changes, assuming an approximate model 
UJ 

of the convergence process.  That is, we considered a reduced form of the 

actual matrix of the almost 5000 equations to be solved, namely: 

Q = 

AAt 

I 

-I 

-AAt 

by interpreting the scalar number a as representing the largest (negative) 

eigenvalue of the Markov process matrix A, multiplied by the time step ßt, 

and writing 
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Q'   = 

a 

1 

-1 

-a 
2 

1 

-1 

a 
6 

-1 

-a 
6 

UNSTABLE   REGION 

FIGURE B.1     ROOT LOCI FOR VARIOUS W VALUES 
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This corresponds to taking four terms in the continued fraction expansion 

of e  and is associated with five nodes of the flow graph 

a/10 

a 
representing y = e x.  (We tried using nine terms of this flow graph for 

better accuracy, but no improvement resulted in overall computational 

effort.) 

Analyzing the five eigenvalues of the over-relaxation iteration 

matrix £ and using the above matrix Q , where 

£  = [<JJF - (1 - UJ)D](D + U)E) 
U) 

-1 

[see Ref. 1}   Eq. (B-8a)] gives an equation for four of these eigenvalues 

(one of them is <J0 - 1) as follows: 

2    2 2 
(\ + U) - 1)  = \u) u.     , 

where \x  is an eigenvalue of the upper and lower triangular parts E + F 

of the matrix Q in Ref. 1.  Hence; after some manipulation, it can be 

shown that the other four eigenvalues of £  (being a 5 X 5 matrix) are 
uo 

given by the solution to the polynomial 

) 1 \ \ 
4 . |«Sl _ 4a) + A" + (6(0, - I)' - £  U)4 - Q,(W - l)\x2 

2 

12 

\a    2 
- — u) - 

I 2 
)       2 4 

4u) + 4 (uo - 1) \ + (UJ - 1)  = 0 
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When uo = 1, we have the reduced situation 

2 
4  o- 3  a*  2 

which forces two of the eigenvalues to be 0.  This explains why the 

straightforward "block Jacobi" method (without any relaxation factor, 

either <1 or >1) is not too good for our problem because it implies de- 

generacy of eigenvalues.  The optimal uo occurs when the coefficients of 
o 

3 
\    and X  vanish, for then the equation becomes 

2 , 
where uo is  found  in  terms  of  abycwo/8  = uo -  1,   i.e., 

uo    = - (1 =F /I - a/2) 
o      a 

(we take the minus sign to get our uo > 0).  For uo = CJD , all eigenvalues 
o 

are of equal, absolute value because they evidently come in squares of 

conjugate pairs; thus clearly, without having to solve the above equation, 

4 
the product of the magnitudes is known to be the term (uo - 1) .  Hence, 

the optimal convergence rate is |cu — l|. 

Now, the time steps were taken to be &t = 0.01, and the highest terms 

appearing in the large matrix A are -243 on the main diagonal.  Hence, the 

largest eigenvalue (in magnitude) of the matrix Aßt can be estimated at 

-2.  When this value is used, the optimal computed uo  is 0.83.  Amazingly, 

the best convergence obtained experimentally by the integration program 

was for uo = 0.9, with about 5 iterations per step, while uo = 1,1 took 13 

steps.  Thus, the analytical evaluation of the best uo corroborated the 

experimental results. 
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Appendix C 

MASON'S  RULE 

A convenient method is available for determining transmissions (or 

gains) between any pair of nodes in small flow graphs by inspection.  In 

its algebraic form, the formula resembles Cramer's rule for solving simul- 

taneous linear equations. 

Each flow graph has a graph determinant A> the value of which remains 

invariant under various rules for manipulating flow graphs to obtain 

equivalent flow graphs.  To evaluate the graph determinant, it is neces- 

sary to find the path transmission of every loop in the flow graph, where 

a loop is a sequence of (directed) branches from a node back to itself 

without repeating any other node.   Figure C.l has three loops: 

• Node 1 to node 1, with loop transmission p 

• Node 1 to node 2,   then back from node 2 to node 1, with loop 
transmission p _PQ1 . 

1A Cd X 

• Node 1 to node 2 to node 4 to node 3 back to node 1, with 

loop transmission P12
P24P43P3l* 

The loop transmission is denoted by L . L , L , ..., L in the general 
x   ILA       \j n 

case; the graph determinant is then obtained by expanding the product 

(1-Ll)(1-L2)-(1-LJ 

and deleting all terms that contain products of touching loops.  In the 

example of Figure E.-l, of the three loops L , L , L . any selected pair 
X. *€t «J 

A path transmission is the product of the transmissions of the branches 
comprising the path. 

275 



"24 

FIGURE C.1     TRANSITION DIAGRAM FOR A TYPICAL MARKOV CHAIN 

touch; therefore, 

L    -  L    =  1 -  p       -pp       -pppp 
2 3 *11       *12F21       *12*24F43H31 

An equivalent formula for A is 

A = 1 - EL    4- >  L L 
k Z-r j k 

all loops k  all pairs of nontouching      all triplets of 
loops j and k       nontouching loops i,j,k 

E
L

I
L

J L + ... 
k 

Mason's rule for calculating transmissions between selected nodes i 

and j in an arbitrary flow graph is given by the formula 

K 

k=l 
Vk 

g. . = 
1J 

where there are K open paths from node i to node j; t  is the path trans- 

th 
mission of the k  path, A is the graph determinant, and A  is the graph 

K 
th 

determinant of the subgraph corresponding to path k.  The k  subgraph 

is obtained by eliminating the open path k and all loops touching this 

path; if all loops are killed by an open path, the determinant of its 

subgraph reduces to unity. 
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As an example in Figure A.l, the transmission from node 1 to node 2 

can be determined to be p /A. because there is a single path of trans- 

mission p  from node 1 to node 2 and that path kills all the loops so 
12 

that the determinant of its subgraph is unity.  The transmission from 

node 2 to node 1 is more complex.  There are two open paths with trans- 

missions p„  and P„.P.„P„,, and since each of these open paths kills all 
21     24 43 31' 

the loops in the graph, 

(a   X 1) + [a  a  a \  X 1 
\ 21    /   \ 24 43 31/ _   

b21 A 

a  + a  a  a 
21    24 43 31 

1-a  -aa  -aaaa 
11    12 21    12 24 43 31 
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Appendix D 

LEAST SQUARES AND QUADRATIC PROGRAMMING 

1.   Least Squares Programming 

The classical least-squares problem can be formulated as follows: 

Assume the linear model 

y = Hx + z   , (D.l) 

where 

x is an unknown constant vector (n X 1) 

y is an (m X 1) observable random vector 

H is an m X n matrix of full rank 

z is an m X 1 error vector such that E(z) =0. 

Then the sum of the squared deviations (errors) is 

z z - (y - Hx)T(y - Hx)    . (D.2) 

Differentiating with respect to x, equating the derivative to zero, and 

solving for x as in Section VI gives the solution 

/ T \   T 
x = (H E)     H y    . (D.3) 

A generalization from Aitken assumes that the covariance matrix of 

the errors is known 
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:(zzT) (D.4) 

Then the scalar to minimize includes V  ; specifically minimize 

(y - Hx) V~ (y - Hx) (D.5) 

The solution to this generalized least squares problem is 

-1 
/ T -1 \   T -1 

x = IH V H^  H V  y (D.6) 

This formula may also be used to weight the error components by choosing 

V to be a suitable diagonal matrix with positive components. 

It is sometimes convenient to place additional linear constraints on 

the unknown variables x in the model consisting of Eqs. (D.l) and (D.4). 

Assume these constraints are expressible as 

Ax = k (D.7) 

where A is a known constant matrix of dimensions p x n, k is a known con- 

stant vector of dimensions p x 1, and rank A = p < n.  Then the solution 

to the constrained least squares model in Eqs. (D.l), (D.4); and (D.7) is 

-1 

x = x + 
/ T -1 \   T   / T -1 \   T 
IH V  Hi  A   AIH V  Hj  A (k - Ax) (D.8) 

where x is the solution to the unconstrained problem given in Eq. (D.6). 

If the constraints are not binding, the quantity multiplying (k - Ax) in 

Eq. (D.8) will be zero. 
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The covariance matrix of x is 

= B^HTV_1HJ] cov x = B(H"V "HlB (D.9) 

where 

~ T 
B = I 

/ T -1 V"1 T| / T -1 \-1 
(H V H) A  AIH V  H)  A (D.10) 

The constrained least squares formula given here may be found in 

Ref. 22. 

2.   Quadratic Programming 

Least squares methods given above do not incorporate linear inequality 

constraints; in particular, the components of the vector x cannot be con- 

strained to be nonnegative.  Quadratic programming may be regarded as an 

extension of constrained least squares in which nonnegativity constraints 

can be introduced.  For purposes here, a quadratic program can be formu- 

lated as a minimization problem: 

T     T , 
minimize z = x Dx + c x (D.11) 

subject to constraints 

Ax = k   and   x 5 0 (D.12) 

where c and k are known constant vectors and D is a symmetric and positive 

semidefinite known matrix of constants.  (In least squares applications, 

these conditions on D are automatically satisfied.) 
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When it is desired to minimize 

d = (y - Hx) (y - Hx)    , (D.13) 

the right hand side is first expanded to obtain 

2   T T      T     T , 
d  = x H Hx - 2y Hx + y y    . (D.14) 

T 
The matrix D is identifiable as H H, and the vector c is identifiable as 

T T 
-2y H.  The constant term y y may be neglected. 

Quadratic programming problems may be solved by modifying a simplex 

code used for solving ordinary linear programs.  The modifications, al- 

though few in number, are not easy to implement.  A quadratic programming 

algorithm suitable for small problems was developed during the research; 

regrettably, it could not be applied to problems of realistic size. 

The computational effort for linear programs is known to be roughly 

3 
proportional to m , where m is the number of rows.  A quadratic program 

with m constraints and n variables requires about the same amount of 

computational effort as a linear program with (m + n) rows.  Typical 

linear programming applications have about three times as many columns 

as rows, therefore (m + n) is about 4 m.  Cubing this gives the approxi- 

mation 

3 
(running time of a quadratic program) s: k64 m 

where m is the number of constraints and k is a constant.  This relation- 

ship should be considered carefully in determining the number of variables 

and constraints to use in quadratic programming applications. 
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Appendix E 

THEOREMS ON PARAMETER ESTIMATION 

In Section VII, a set of theorems concerning some basic identities 

arising in the estimation of parameters of a Markov chain were cited and 

applied.  In this appendix the theorems are precisely stated, proved, and 

illustrated with a numerical example. 

Suppose an arbitrary random process has N states, where states 1, 2, 

..., M are transient and states M + 1, M + 2, ..., N are absorbing.  Let 

data from this process be given for a set of n  complete trials, where 

complete means each of the n  trials begins in state 1 and continues 

until absorption occurs in some absorbing state.  A path corresponding 

to a complete trial is therefore an ordered sequence of integers of the 

form 

1 t t t .. . t  a 
12 3   n 

where each t  is an integer from 1 to M and a is an integer in the range 
j 

M + 1 <■  a ^ N.  The path represents the sequence of states entered when 

read from left to right—since "a" represents absorption in state a the 

path is completely described. 

The random process is arbitrary.  Nevertheless, we will apply a 

Markov chain model with the same states. 

Following Markov chain estimation theory, we suppose transition 

probabilities p. . are estimated from 
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rn /n    if n > 0 
ij  i       i 

P. . = < (E.l) 
ij   t 

if n. = 0 

where 

n  = observed number of transitions from i to j 
ij 

N 
n - £  n  = number of transitions out of state i. 
i  j=l  ij 

The n  are readily computed from the path data by counting transitions, 
ij 

Now we partition P, the matrix of estimated transition probabilities, as 

in Section V. 

*"C  r) 
where Q is M X M, R is M X (N - M), and I is the identity matrix of dimen- 

sion (N - M) X (N - M). 

According to Markov theory (Section V-D) ; the true absorption proba- 

bilities a  are found by calculating A = (a  ) 

A = (I - Q)" R (E.3) 

when Q and R are the true transition probabilities. 

1.   Theorem 1 

When Q and R in Eq. (E.3) are replaced by their estimates from Eq, 

(E.2), then the first row of the estimator A, 

A = (I - Q)~ R    , (E.4) 

288 



is identical to the row vector of ratios 

/S S 
M+l M+2 

n« '    n V 01 01 

where S  = number of times (out of n  trials) that the process is ob- 
j 01 

served to be absorbed in state j (j = M + 1, ..., N).  In other words, 

the Markov estimates of absorption probabilities are identical to the 

ratios (number of times process is absorbed in j/number of trials), which 

are computable directly from the given data by ignoring all internal 

transitions and simply counting numbers of entries into the respective 

absorbing states. 

Proof 

Let state 0 be an artificial state from which transitions to 

state 1 (the starting state) are always made.  Using the n  as defined 
ij 

above, a "balance equation" Eq. (E.5) can be written at each node 

M        N 

n  + 7  n  = >  n 
01 L^d    kl  / ; ]    Ik 

k^l      k=l 

M        N 

n. 
2-J  "ki  2-J "i 
k=l      j=l 

(at state 1) 

(E.5) 

(at state i = 2,3,...,M) 

These relations merely state that every sample path entering a transient 

state also leaves it.  By summing the number of entries into an absorbing 

state over absorbing states, we obtain Eq. (E.6) 

N   / M 

EE-, 
j=M+l \i=l 

This relation says that all paths terminate in some absorbing state 

. = n     . (E.6) 
j/   01 

j=M+l \i=l 
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Define 

x0 = n01 (E.7) 

N 

number of transitions out of (or into) state i 
ij 

x = 7  n 
i  Z—i    ij 

i = 1,2,...,M       (E.8) 

■ =Y« . 
i  '   *    ki 

M 

x. = y     n . = number of transitions into state i 

k=l 
i = M + 1,M + 2,...,N       (E.9) 

Then rewrite Eq. (E.5) to obtain Eq. (E.10). 

M n 
x 

1         .. 
k=l  k 

  x = x 
X,    k     1 

M  /n 

x. = /["^Mx.   at states i = 2,3,...,U . (E.LO) 

j=l \ j/ 

Equation (E.6) becomes 

N 

Ex    = n       = x 
j 01 0 

(E.ll) 

j=M+l 

Let 

n ..       n .. 
f ..   = — = -^ n for  i = 1,2,...,N;   j  = 1,2,...,M .     (E.12) jx x. N^    ji 

3    2- 
i=l 

Then Eqs.   (E.10)   and   (E.ll)   become  Eq.   (E.13) 
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m 

C  = X„ + >^ f  X 
1   0  Z-f ji 

M 

x. = >^ f..x.    (i = 2,3,....M) 
i  1—J    Ji J 

j=l 

N 

x = N   x    from Eq. (E.ll) (E.13) 
0   Z—/  J 

j=M+l 

and from the definitions of x. in Eq. (E.9) for absorbing states 

M  n M n 

x 
i  _^_ __ 

k=l  k      k=l 

  x, =7  f  x,    (i = M + 1,M + 2,...,N)    .  (E.14) 
x,  k ^^    ki k '     '        ' 

Combining Eqs. (E.13) and (E.14) gives Eqs. (E.15) and (E.16) 

M 

c = x + >  f 
i      o    Z-f  ji X (E.15) 

3-1 J 

M 
x, = 2   ■ ± "Xj    (1 = 2,3,...,M,...,N)    ,        (E.16) 

M 

c. = y^ f ..x.    (i 1 £fJ1J 

But Eqs. (E.15) and (F.16) are precisely the equations that are 

solved using the flow-graph approach to absorption probabilities when the 

true transition probabilities p  are replaced by the f   (Ref. 5, pp. 161- 
ij ij 

162, 200). Therefore, the solution of the flow-graph equations, which are 

transmissions in the flow graph, are the ratios x ./x when all other vari- 

ables are eliminated.  Choosing one absorption state (say N) as the Success 

state, the ratio x /x  is also the direct estimate given in Eq. (E.17). 
NO 

M 

x   L-J    iN 
N  i=l      number of paths terminating in state N 
— _   _      #  (E.17) 
x     n total number of paths 
0     01 
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Therefore, the estimate of success probability obtained when 

using the flow-graph approach is identical to the simpler estimate on the 

right side of Eq. (E.17).  Since the flow-graph approach can be easily 

shown to give the same result as the matrix inversion method of Eq. (E.4), 

the proof is complete. 

b.   Example of Theorem 1 

In a four state Markov chain model, let states 3 and 4 be ab- 

sorbing and states 1 and 2 be transient. Suppose the given set of com- 

plete trials (paths) are given by 

11123 

12224 

12123 

1213 

14 

These path data are generated by an arbitrary process, not necessarily 

Markov. 

The numbers of transitions implied by these paths are shown on 

the transition diagram of Figure E.l.  The estimated transition matrix 

P therefore is: 

(2 5 1 1^ 

» 
9 9 9 

2 2 2 1 
/\ 7 7 7 7 
f   — 

0 0 1 0 

I» 0 0 1 / 
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FIGURE E.1     NUMBER OF TRANSITIONS FOR A FOUR-STATE MARKOV CHAIN 

* *.   — 1 
I - Q and (I - Q)   are readily calculated 

I - Q = 

«-^■iu 
The estimated absorption matrix A is 

A = (I - Q)  R = 

25    25/ v25    25/ \7 

Having made these Markov calculations, we observe that the (1,1) element 

of A is identical to the ratio 

number of paths terminating in state 3  3 
number of paths 5 

and the (1,2) element is identical to the ratio 2/5 as guaranteed by 

Theorem 1. 

^ -1 
The elements of (I - Q)   calculated in Example 1 can be used 

to illustrate Theorem 2 which is stated below.  Recall from Markov theory 
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that the (i,j) element of (I - Q)   is the mean number of entries into 

state j before absorption, given that the process starts in state i. 

- -1 
The first row of (I - Q)  , which corresponds to starting in 

state 1, is (9/5, 7/5) from the calculations in Example 1.  By counting 

the number of ones in the five paths of Example 1, we see that 

(3+1+2+2+1) =9 entries into state 1.  The average number of 

entries into state 1 is therefore 9/5, which is identical to the (1,1) 

- -1 
entry of (I - Q)  .  Examining the other transient state, we find that 

there are (1+3+2+1) =7 transitions into state 2, for an average of 

7/5 entries into state 2 before absorption.  Since 7/5 is also the (1,2) 

- -1 
element of (I - Q)  , it appears that another algebraic identity, similar 

to that in the theorem, has been found.  Further numerical experimentation 

leads to Theorem 2. 

2.   Theorem 2 

Under the conditions of Theorem 1, the elements of the first row of 

(I - Q)   are identical to the basic estimates obtained directly from 

the path data by counting transitions into the respective transient states; 

that is, 

~ -1    number of entries into state j 
(I - Q)n . =  ~ — 7 f "    (j = 1,2,...,M) 

l,j      number of paths /=n  J ' 

a.   Proof 

The proof of Theorem 2 is contained in Theorem 1.  It is only 

necessary to note that the ratios x /x  (j = 1,2,...,M) are the mean 
jo. 

numbers of entries into transient states.  These ratios, from Markov 

theory, equal the flow-graph transmissions that in turn are the elements 

~ -1 
in the first row of (I - Q)  .  It can be noted that Theorems 1 and 2 can 

be unified into a single theorem which states that the Markov-derived mean 
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number of entries into all states is identical to the direct estimates 

from the data; this unification is possible because the mean number of 

entries into an absorption state equals the probability of absorption 

into that state. 

b.   Example of Theorem 2 

Data from the previous example can be used to illustrate 

Theorem 2.  By direct count from the five paths, there are 

(3+1+2+2+1)   =9  entries   into  state   1 

(1+3+2+1) =7 entries into state 2. 

The first row of (I - Q)   is (9/5, 7/5) and thus verifies the identity. 

Theorem 2 concerns the mean number of entries into each state 

before abosrption while Theorem 1 concerns the absorption probabilities. 

Theorem 3 is related to another measure of effectiveness:  the mean time 

to absorption conditioned on the starting state and the absorbing state. 

3.   Theorem 3 

Assume path data and Markov chain model as in the theorem.  Choose 

any absorbing state (say the failure state f) and consider estimating the 

mean time to absorption in that state, conditioned on starting in state 1 

and absorption in that state.  Use only those paths terminating in the 

designated absorbing state f to estimate the p. ..  Then the Markov formula 

for conditional mean time to absorption in state f, given start in state 

1, gives identically the same mean time to absorb as does the direct esti- 

mate from the path data.  Symbolically, the (l,f) element of 

(I - Q)  (I - Q)  R 
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when divided by a  = (l,f) element of A, is identical to 

number of transitions before absorption in f 
number of paths absorbing in f 

all paths 
absorbing in f 

a.   Proof 

Since only data leading to the absorption state f are used to 

estimate Q and R, the absorption probability estimator A is of the form 

oio 
that is, Ä has a single column of ones in the column corresponding to 

absorption state f and has zeroes elsewhere. 

An examination of the formula (I-Q)  (I-Q)  R = (I - Q)Ä 

clearly shows that the column of ones in A merely serves to sum the ele- 

ments of rows of (I - Q)  .  This summation represents the total number 

of transitions before absorption, the conditional mean time to failure 

in this context.  Symbolically, 

(conditional mean time until failure) 

M 

= y      (mean numbers of entries into state j before absorption) 

M        M 

(i - 6) =IX=Z(i-^ 
j=l        j=l 
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b.   Example of Theorem 3 

Data from the absorption probability example above will also 

serve to illustrate the identity in Theorem 3 provided that either state 

3 or state 4 is selected as an absorbing state.  Selecting state 3 arbi- 

trarily, the path data are 

11123 

12123 

1213 

from which P,   Q, and R are readily found 

4 1> 

7 7 7 

1 

2 
0 

2 

V 0 1> 

and hence, 

(I - Q) = 

(I - Q) 
-1 

A   — 1A 
The absorption matrix (I - Q)  R consists of all ones because only one 

absorbing state exists.  Therefore, 

(I - Q)  (I - Q)_1R = (I - Q)~ 
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The first component (11/3) agrees exactly with the mean number 

determined from the path data.  (Path 11123 requires 4 transitions, path 

12123 also requires 4 transitions, and path 1213 requires 3 transitions 

for a total of eleven transitions in three trials.)  The identity is 

therefore verified in this case. 
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Appendix F 

DETERMINING A SET OF STATES 

It was indicated in Section XII-C that the choice of a set of states 

is likely to be the most difficult part of the application of Markov 

models.  Some discussion of this problem aspect is therefore needed. 

Requirements on the state space (set of states) imposed from the 

mathematical definition of state are: 

• States should be defined to be mutually collective and ex- 
haustive; that is, at each instant of time, the process 
should be in only one state. 

• The next transition of the process should depend only on the 
current state and not on how this state was reached. 

The first requirement is not difficult to achieve from the stand- 

point of logic alone.  In a complex realistic environment, however, it 

may be difficult to ensure consistency.  Not much can be said in general 

about this requirement except that concepts from elementary set theory 

may be useful.  For example, if it is desirable to have states A and B 

defined (for operational reasons) such that it is possible to be in both 

states A and B simultaneously, then it may be desirable to define a new 

state meaning:  the process is in both states A and B.  The previous 

meaning of state A must then be modified to mean:  in state A and not 

state B; a similar modification would be required for state B. 

The second requirement—paraphrased as:  the future should depend 

only on the present state and not on the past states—is probably im- 

possible to achieve exactly in any real application.  When the state is 

search, for example, no other information about the previous states 
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occupied or other variables is assumed to be needed to determine the 

future course of the process. 

In most analytical applications, the state space is selected on the 

basis of information variables as opposed to other possibilities such as 

geometrical variables (range, bearing, speed).  This will probably remain 

true for operational applications as well.  However, the possibility of 

using both information and geometrical variables should be kept open 

until it is reasonably certain that geometry need not enter.  To keep the 

number of states from getting out hand, it may be possible to introduce 

geometry by distinguishing a small number of levels of important variables 

such as range.  For example, a state may be labeled by the pair (Search, 

long range) to indicate that the (original) state is Search and the actual 

range between the searcher and the target is greater than some specified 

threshold. 

In applications, an analyst's experience and judgment must ultimately 

be used to obtain definitions for a set of states.  A reasonably systematic 

approach to assist in state definition is outlined as follows. 

• Determine a set of dynamic variables from which states may be 

defined.  At least two major categories of variables will be 

required:  geometry/kinematic variables and information 

variables. 

• Choose a set of states that are mutually exclusive and col- 

lectively exhaustive and can be determined from the values 

of the dynamic variables. 

• For a selected set of states: 

- Use fleet exercise data from both exercise reports and 

other historical data to determine sequence of states 

entered and the times of entry into states.  (The sequence 

and associated times of entry can be considered a "path ' 

through the states.) 

- Perform tests to determine whether the observed paths may 

be assumed generated by a Markov or semi-Markov process. 
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•  When the Markov assumption is justified: 

- Estimate parameters of the Markov model from the path data, 
using both standard methods and methods in Section VI. 

- Run the Markov model to determine properties of the output. 
Specifically, determine the probability of terminating in 
a Success state, the mean time to Success (or to Fail), 
and probability of occupying each state as a function of 
time for all states. 
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